Control pancreatic cells (Panc-1 and MIA PaCa-2 cells) and a tumor | 50 µM; 14 days | Upregulation: miR-221, miR-155; Downregulation: miR-126 | 1) miR-221 and miR-155 were upregulated in metastatic PDAC cell lines treated with cadmium chloride, while miR-126 was downregulated. 2) There is a significant association between miRNAs and Cd exposure during PDAC progression. | 44 |
RPTECs, hTERT cells, and human kidney-2 cells | 20 µM for human kidney-2 cells and 10 µM for RPTECs and hTERT cells; 24 h | Upregulation: miR-29c-3p, miR-376c-3p, miR-185-5p, miR-203a-3p, miR-132-3p, miR-27a-3p, miR-125b-5p, miR-301a-3p, miR-222-3p, miR-886-3p, miR-193a-5p, miR-99a-5p, miR-182-5p, miR-146b-5p, miR-21-5p, miR-324-5p, let-7a-5p, miR-146a-5p, let-7b-5p, miR-181a-5p, miR-362-5p, miR-15a-5p, miR-28-3p, miR-328-3p, miR-455-5p, miR-20a-5p, miR-34a-5p, miR-652-3p, miR-30c-5p, miR-26b-5p, miR-183-5p, miR-708-5p, miR-130a-3p, miR-886-5p, miR-99b-5p, miR-31-5p, miR-660-5p, miR-30b-5p | 1) Increased expression of 38 miRNAs in RPTECs and hTERT cells was observed. 2) The target genes of many of these miRNAs encode proteins that are involved in oxidative stress, inflammation, and apoptosis. | 45 |
Ovarian granulosa cells of ICR mice | 10, 20, and 40 µM; 2, 4, 6, and 8 h | Upregulation: miR-384-3p, miR-153-3p, miR-338-3p, miR-551b-3p, miR-129-1-3p, miR-129-5p, miR-9-5p, miR-496a-3p, miR-135a-5p, miR-539-5p, miR-344-3p, miR-379-3p, miR-126a-3p, miR-219a-2-3p, miR-128-3p, miR-218-5p, miR-326-3p, miR-380-3p, miR-376a-3p, miR-376a-5p, miR-543-3p, miR-741-3p, miR-488-3p, miR-190a-5p, miR-3473b, miR-3473a, miR-138-5p, miR-29c-5p, miR-330-5p, miR-410-3p, miR-376b-3p, miR-7b-5p. Downregulation: miR-202-5p, miR-322-3p, miR-1953, miR-450a-2-3p, miR-5121, miR-712-5p, miR-302d-3p, miR-5625-3p, miR-375-3p, miR-672-5p, miR-25-3p, miR-291a-3p, miR-M1–5-5p, miR-19a-3p, miR-489-5p, miR-1912-5p, miR-196a-5p, miR-5099, miR-1894-3p, miR-346-5p, miR-19b-3p, miR-20b-5p, miR-27a-3p, miR-542-5p, miR-93-5p, miR-202-3p | 1) The target gene functions of 29 miRNAs mainly include the regulation of cell metabolism, post-transcriptional messenger RNA regulation, IL6-mediated signal transduction, cell cycle, proliferation, differentiation, and migration. 2) These miRNAs are associated with target genes related to Ras, Rap1, Foxo, Hippo, mitogen-activated protein kinase, and the carcinogenic pathway, regulation of actin cytoskeleton, stem cell signaling pathway polymorphism, and local adhesion leading to cell division and tumorigenesis. | 46 |
Human primary proximal tubule epithelial cells | 25 µM; 6 and 24 h | Upregulation: miR-132-3p; Downregulation: miR-146b-5p, miR-18a-5p | 1) Increased expression of miR-132-3p after 6 h. 2) Increased expression of miR-132-3p after 24 h. | 47 |
Human prostate epithelial cells transformed with Cd | 10 µM; 8 weeks | Upregulation: miR-96, miR-134, miR-9; Downregulation: miR-125a-5p, miR-222, let-7b, miR-205, miR-20a, miR-146b-5p, miR-138, miR-373 | 1) 12 and 3 miRNAs had decreased and increased expression, respectively. 2) These data show that the expression of miRNAs with altered expression may be important in the transformation process of the malignant prostate epithelium by Cd. | 48 |
Hepatoma cell line (HepG2) | 0.1–10 µM cadmium chloride; 24, 48, and 72 h | Upregulation: hsa-mir-138 and hsa-mir-372 | Analysis of miRNAs showed that the increased expression of miR-372 can affect the expression of p21 and promote cell cycle progression and proliferation. | 49 |
Cell line BALB/3T3 A31-1-1 | 2.4 µM cadmium chloride with lead and arsenic; 4 h | Upregulation: miR-154, miR-10, miR-222, miR-375, miR-133, miR-204, miR-379 | The results show that this metal mixture led to altered expression of miRNAs, which may be responsible for changes in messenger RNA expression that encode proteins involved in cellular processes, including cell death, growth, proliferation and inflammation associated with heavy metals. | 50 |
Human lung epithelial cell line and normal bronchial epithelial cells | Cd; 24 h | Downregulation: miR-181a-2-3p | 1) The results showed that the expression of miR-181a-2-3p was significantly decreased in cells treated with Cd, and the silencing of miR-181a-2-3p increased the inflammatory responses and Cd-induced inflammation. 2) It was found that the negative regulatory effect of miR-181a-2-3p on inflammation is partially mediated by the calcium signaling pathway. 3) miR-181a-2-3p knockdown followed by Cd exposure significantly increased the expression levels of inflammatory cytokines such as IL1α, IL1β, IL6, IL8, tumor necrosis factor alpha, and increased cyclooxygenase 2. | 51 |
NRK-52E cells (a rat kidney epithelial cell line) | 10 µM; 48 h | Upregulation: miR-375-3p, miR-196c-3p, miR-155-5p, miR-34a-5p, miR-210-3p, miR-17-1-3p, miR-183-5p, miR-203b-3p, miR-199a-5p, miR-146b-5p, miR-132-3p, miR-20b-5p, miR-21-5p, miR-92b-3p, miR-182, miR-26b-5p, miR-379-5p, miR-326-3p, miR-193-5p, miR-3562, miR-18a-5p, miR-31a-5p, let-7d-3p, miR-1224, miR-222-3p, miR-19b-3p, miR-346, miR-221-3p, miR-489-3p, miR-30c-1-3p, miR-223-3p, miR-6324, miR-532-5p, miR-196c-5p, miR-200c-3p, miR-92a-3p, miR-219a-2-3p, miR-29b-3p, miR-212-3p, miR-547-5p,miR-214-3p, miR-449c-5p, miR-532-3p; Downregulation: miR-344g, miR-122-5p, miR-664-1-5p, miR-382-5p, miR-702-5p, miR-342-5p, miR-503-5p, miR-350, miR-27b-5p, miR-192-3p, miR-874-3p, miR-708-5p | 1) Cd treatment also increased miR-122-5p and miR-326-3p and decreased PLD1 in NRK-52E cells. 2) The results suggest that miR-122-5p and miR-326-3p may enhance Cd-induced NRK-52E cell apoptosis through downregulating PLD1 expression. | 52 |
LLC-PK1 cells | 20 µM; 12 h | Upregulation: n = 160 miRNAs; Downregulation: n = 25 miRNAs | 1) miR-125a/b plays a key role in the suppression of Cd-induced apoptosis by selenium through the mitochondrial pathway. | 53 |