Numerous studies have validated the antioxidant potential of essential oils. The analysis of essential oils has confirmed their properties, including hydrogen donating capabilities, free radical scavenging abilities, and the capacity to interrupt the chain reaction of lipid peroxidation,16 thereby safeguarding healthy cells from damage (Fig. 3).
Mechanism of essential oil on endogenous antioxidants
A Study has demonstrated that essential oils enhance the content of glutathione, a natural antioxidant by protecting the enzyme glutathione reductase.21 This enzyme is responsible for reducing glutathione disulfide (GSSG) to its sulfhydryl form, known as glutathione (GSH), a potent endogenous antioxidant agent.22 Glutathione, chemically referred to as γ-L-glutamyl-L-cysteinyl-glycine, is an eminent endogenous antioxidant, often termed the master antioxidant. It exists in two forms, reduced (GSH) and oxidized (GSSG/GSH disulphide). In its reduced state, the cysteine group of glutathione donates an electron to free radicals, reacts with another glutathione molecule, and forms GSSG. The enzyme glutathione reductase then regenerates glutathione from glutathione disulfide. In a healthy cell, more than 90% of glutathione is present in the reduced state, while less than 10% is found in the oxidized state.15
Glutathione protects against toxic metals, alcohol, and organic pollutants. It regulates cell growth and maintains immune function. It reduces mucus and inflammation from the airway during lung detoxification.23
Superoxide dismutase stimulates superoxide anions to hydrogen peroxide, which is later converted to water and oxygen by catalase.24 In mammals, superoxide dismutases (SODs) are found in three isoforms SOD1 (Cu/ZnSOD), SOD2 (MnSOD), and SOD3 (Cu/ZnSOD). These three isoforms SOD1, SOD2, and SOD3 are present in cytoplasm, mitochondria, and extracellularly, respectively.25 The Superoxide dismutase requires a metallic catalyst for activation and provides defense against superoxide (O2•−) particularly. It is responsible for inhibiting oxidative activation of nitric oxide; thus, it protects endothelial and mitochondrial dysfunction by preventing peroxynitrite formation.26
Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase, xanthine oxidase, nitric oxide synthase (NOS), lipoxygenase, and mitochondrial enzymes generate O2•−.27 The generated superoxide is converted to H2O2 by SOD. Dismutation of H2O2 by superoxide dismutase produces hydroxyl (OH•) free radicles. Superoxide-free radicles and hydroxyl-free radicles act on lipid membranes and encourage the formation of lipid radicle and lipid peroxy radicles, which promote oxidative stress and cause lipid peroxidation.28 Further, it transformed into water in the presence of catalytic enzymes like glutathione peroxidases (GPx) and peroxiredoxins. Superoxide dismutase is also called first-line defense against superoxide anion radical toxicity because it obstructs the formation of a strong oxidant of peroxynitrite (ONOO−).29
Catalase, also known as classical catalases or monofunctional heme catalases, plays a crucial role in detoxifying H2O2 by converting it into water and oxygen.30,31 Studies have shown that it scavenges hydrogen peroxide through a two-step mechanism. In the first step, catalase reacts with hydrogen peroxide in its ferric state, forming a Compound I complex and converting the ferric state to the ferrous state. In the subsequent step, the Compound I complex reacts with another molecule of hydrogen peroxide, forming water and oxygen. Catalase thus facilitates the removal of hydrogen peroxides, which are generated in red blood cells and protects pancreatic β-cells from the damaging effects of hydrogen peroxide.32,33
Excess and unregulated nitric oxide production injures cell proteins and alters their functions. Its deficiency is responsible for the dysfunction of the endothelial system.34
Nitric oxide is produced from L-arginine and oxygen in the presence of cofactors, including tetrahydrobiopterin (BH4), by NOS. Along with nitric acid, citrulline is also generated by the reaction. Nitric oxide further oxidized in blood and tissues, leading to nitrite and nitrate formation, which have a half-life of 2 min and 6 h, respectively. Nitric oxide reduces mitochondrial respiration and affects energy production by interacting with cytochrome c oxidase.35
Electron from NADPH flows from the reductase sphere to the oxidative sphere of NOS (Nitric oxide synthase). NOS is a heme-containing enzyme with oxidative and reductase spheres linked via calmodulin. Electron transfer requires two cofactors, flavin adenine dinucleotide and flavin mononucleotide. Electrons finally reach the reduced heme iron of NOS’s oxidative domain, permitting binding of oxygen molecules and initiating nitric oxide generation.36
The mechanism of oxidation by nitric oxide is not known. However, it is fictional that it induces apoptosis by interacting with amino acid receptors, depleting cellular NAD+, and activating caspases. Nitric oxide regulates transcription factors or disperses in blood by binding with the heme portion of cytochrome c oxidase in mitochondria. In the vascular lumen, nitric oxide binds with ferrous heme, forming methemoglobin and nitrate.37 In smooth muscle cells, essential oils modulate the activity of heme-containing guanylyl cyclase enzyme. Guanylyl cyclase is responsible for synthesizing cyclic guanosine 3′,5′-cyclic monophosphate from guanosine triphosphate through dephosphorylation. This synthesis, in turn, activates potassium channels and inhibits calcium channels. The inhibition of calcium channels leads to the phosphorylation of the myosin chain and sarcoplasmic proteins by activating protein kinase. This process promotes the sequestration of calcium ions in the sarcoplasmic reticulum while reducing their concentration in the cytosol, which impacts phosphorylation and consequently results in smooth muscle relaxation (Fig. 4).38