QingFeiPaiDu decoction (QFPDD) treatment benefits patients with coronavirus disease 2019 (COVID-19). This study aims to elucidate the mechanisms that underlie the anti-inflammatory effects of QFPDD.
Based on the clinical symptoms of COVID-19 patients, a component-target-disease network was constructed using the network pharmacology method, and the potential active components, targets, and molecular mechanisms of QFPDD for the treatment of COVID-19 were screened using topology parameter analysis. The best molecules that were affected by QFPDD were validated using Real-Time quantitative polymerase chain reaction (RT-qPCR) in a cellular inflammation model.
In total, 376 active ingredients were identified in QFPDD, and 18,833 potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets. The principal targets included PIK3CA, PIK3R1, APP, SRC, MAPK1, MAPK3, AKT1, HSP90AA1, EP300, and CDK1. Overall, 574 gene oncology entries and 214 signal pathways were identified. QFPDD affected the cellular response to nitrogen compounds, protein kinase activity, and membrane rafts. QFPDD modulated pathways that are associated with cancer, endocrine resistance, PI3K-Akt signaling, and proteoglycans in cancer. Molecular docking indicated that the core ingredients of QFPDD had a strong binding affinity for SARS-CoV-2 3-chymotrypsin-like cysteine protease (3CLpro) and angiotensin-converting enzyme 2 (ACE2). QFPDD treatment significantly mitigated the lipopolysaccharides-induced five targeted gene transcription in A549 cells.
Our findings preliminarily elucidated that through its active ingredients QFPDD targeted 3CLpro and ACE2 to modulate many factors and pathways that are associated with the pathogenesis of COVID-19. The identified potential molecular mechanism, relevant factors, and key genes QFPDD targeted might help in the design of new and specific antiviral drugs.
Full article