FMS-like tyrosine kinase 3 (FLT3) mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and play a pivotal role in leukemogenesis. The two primary mutation types, internal tandem duplications (ITDs) and tyrosine kinase domain point mutations, serve as key prognostic markers and therapeutic targets. Advances in next-generation sequencing (NGS) have revolutionized FLT3 mutation detection by providing precise insights into mutation architecture, enhancing risk stratification, and enabling personalized treatment strategies. Additionally, these advancements have facilitated molecular minimal residual disease (MRD) testing, which is instrumental in guiding post-remission management. This review summarizes the molecular characteristics, diagnostic approaches, and therapeutic implications of FLT3 mutations in hematologic malignancies.
A narrative review of the current literature on FLT3 mutations was conducted, incorporating data from original research articles, clinical trials, and recent reviews. Relevant studies were identified through a PubMed literature search and manually curated.
FLT3 mutations are detected in approximately 30% of AML cases and occur at lower frequencies in myelodysplastic syndromes, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and mixed phenotype acute leukemia. NGS enables comprehensive mutation profiling, revealing rare variants and subclonal complexity while supporting MRD detection with high analytic sensitivity. FLT3-ITD-based MRD positivity is strongly associated with relapse and poor survival in AML. Clinical trial data support FLT3 inhibitors, including midostaurin, gilteritinib, and quizartinib, in FLT3-mutated AML. Additionally, MRD-guided therapy and combination treatment strategies are promising approaches to overcoming resistance.
FLT3 mutations play a central role in the pathogenesis and treatment of AML and related malignancies. NGS-based testing and MRD monitoring transform clinical decision-making by refining risk stratification and enabling personalized therapeutic interventions. Establishing standardized testing protocols and the broader integration of FLT3-targeted therapies will be essential for optimizing patient outcomes.
Full article