v
Search
Advanced

Publications > Journals > Journal of Clinical and Translational Hepatology> Article Full Text

  • OPEN ACCESS

Autoimmune Hepatitis Associated with Other Autoimmune Diseases: A Critical Review

  • Danzhu Zhao1,*  and
  • George Y. Wu2
 Author information 

Abstract

Autoimmune hepatitis (AIH) is an inflammatory liver disease influenced by genetic, environmental, and immunologic factors. Individuals diagnosed with AIH may exhibit concurrent autoimmune manifestations affecting multiple organ systems. The prevalence of AIH associated with other autoimmune diseases has been reported to range from 20% to 40%. This review indicates that the associations between AIH and autoimmune thyroiditis, type 1 diabetes mellitus, ulcerative colitis, Crohn disease, and celiac disease appear to be significant. However, the associations between AIH and primary sclerosing cholangitis, primary biliary cholangitis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, and vitiligo are not well-supported. The aim of this review is to evaluate the strength of the reported associations between AIH and other autoimmune diseases, and to update and present the available evidence on their prevalence, proposed underlying pathogenic mechanisms, diagnostic considerations, and treatment approaches.

Graphical Abstract

Keywords

Autoimmune hepatitis, Autoimmune diseases, Immune system diseases, Genetic predisposition to disease, Prevalence, Diagnostics, Treatment

Introduction

Autoimmune hepatitis (AIH) is an inflammatory liver disease influenced by genetic, environmental, and immunologic factors. Individuals diagnosed with AIH may exhibit concurrent autoimmune manifestations affecting multiple organ systems. It is classified into type 1 (AIH-1) and type 2 (AIH-2) based on the presence of specific antibodies. AIH-1 is associated with antinuclear antibody (ANA) and anti-smooth muscle antibody (ASMA) seropositivity, whereas AIH-2 is characterized by the presence of anti-liver kidney microsome type 1 antibody (LKM1) antibodies or anti-liver cytosol type 1 antibodies.1 The prevalence of AIH is higher in females (3.5:1 female-to-male ratio),2–4 although male cases are reportedly increasing.5,6 A recent global meta-analysis of 22 studies reported an annual incidence of 1.37 per 100,000 and a prevalence of 17.44 per 1,000,000 across Asian, European, and American populations. Regionally, the prevalence of AIH in the USA was 22.8 per 100,000.7 In a US cohort study, the prevalence rate of AIH diagnosis was 31.2 per 100,000, with higher rates in Caucasians, females, and those over 65 years.8

The prevalence of AIH-associated autoimmune diseases has been reported to range from 20% to 40% (Table 1).4,6–41 In this review, we define the term “associated” as the prevalence of two conditions appearing together at a frequency greater than would be expected based on the individual prevalence of either condition alone. Proposed pathogenetic mechanisms of AIH-associated autoimmune diseases include genetic factors, immune dysregulation, and molecular mimicry (Fig. 1).9,42 Because the organ and tissue involvement vary so widely, the question arises as to whether the associations are real and, if so, whether there are pathogenetic autoimmune bases in common that underlie the development of these associated diseases.

Table 1

Reported AIH-associated autoimmune diseases

AIH-associated autoimmune diseasesPrevalence of AIH-associated autoimmune diseases in AIH (%)References
Endocrine
  Autoimmune thyroiditis (Hashimoto thyroiditis and Graves disease)6–23*6,1012,35
  Diabetes (Type 1)1–10*10,19,33,35
Hepatobiliary
  Primary biliary cholangitis2.1–199,2022,36,37
  Primary sclerosing cholangitis2–1011,1315,23,24,36,37
Gastrointestinal
  Inflammatory bowel disease (Ulcerative colitis and Crohn disease)2–16*8,10,25,35,3841
  Celiac disease2.8–6.4*2628,35
Rheumatologic
  Systemic lupus erythematosus1.6–1516,17,29,31,35
  Rheumatoid arthritis1.6–7.84,7,8,30,32,33,35
  Sjögren syndrome4.98
Dermatologic
  Vitiligo1–418,33,34
A diagram showing possible pathogenetic pathways of AIH and associated autoimmune diseases.
Fig. 1  A diagram showing possible pathogenetic pathways of AIH and associated autoimmune diseases.

The leading proposals involve HLA class II gene-mediated antigen presentation through MHC class II, leading to CD4+ T cell activation, such as Th1 and Th17 subsets, among others. These stimulate the production of proinflammatory cytokines IL-17 and IL-22, cytotoxic CD8+ T cells, and autoantibody-producing B cells. Impaired regulatory T cell (Treg) function contributes to immune dysregulation. These shared mechanisms may account for the autoimmune damage to the liver and associated organs, as seen in celiac disease, autoimmune thyroiditis, Crohn disease, ulcerative colitis, and type 1 diabetes mellitus. Created with BioRender. AIH, autoimmune hepatitis; HLA, human leukocyte antigen; MHC, major histocompatibility complex; ATD, autoimmune thyroid disease; T1DM, type 1 diabetes mellitus; CD, Crohn disease; UC, ulcerative colitis; SMA, smooth muscle autoantibody; ANA, antinuclear autoantibody.

The aim of this review is to update and present the supporting data on the prevalence, proposed pathogenetic mechanisms, diagnostic considerations, and specific treatment approaches for AIH-associated autoimmune diseases.

AIH-associated endocrine autoimmune diseases

AIH-associated autoimmune thyroid disease (ATD)

Supportive evidence and epidemiology

A recent national US population study involving over 37 million individuals reported that patients with AIH were more likely to have a history of AITD than those without AIH (P < 0.0001). However, two-thirds of the AIH cases in this study were diagnosed without liver biopsy. AIH-ATD is among the most common AIH-associated autoimmune diseases, affecting 6% to 23% of patients with AIH. Hashimoto thyroiditis (HT) is the most prevalent, followed by Graves disease (GD), with a reported prevalence of 6% for GD in AIH.10,11 A study of 163 patients with AIH and 1104 age- and gender-matched controls found a significantly higher prevalence of hypothyroidism in AIH patients (17.7% compared to 5%, P < 0.001).12 These studies overall suggest a strong association between AIH and ATD.8

Proposed pathogenic mechanisms

Proposed pathogenetic mechanisms of AIH-associated autoimmune diseases include genetic factors, immune dysregulation, and molecular mimicry.9,42 AIH-1 is strongly associated with the human leukocyte antigen (HLA)-DRB1 (DR3) locus,13 which encodes the class II human major histocompatibility complex responsible for presenting antigens to CD4+ T-helper cells (Th) and CD8+ cytotoxic T lymphocytes. A study of 649 AIH-1 patients found that 75% were positive for HLA DRB1*03 and DRB1*04 (P < 0.001), suggesting a significant prevalence in Caucasian European and North American populations.13 DRB1*04:05 has also been significantly associated with AIH in Japanese cohorts (OR = 3.47, 95% CI: 2.34–5.14, P = 4.0 × 10−9).14 AIH-2 susceptibility has been shown to be significantly associated with HLA-DRB1*03, as shown in a study of 60 Caucasian patients with AIH-2 and 313 control subjects (RR = 4.25, P < 0.0001).43,44 Whole-genome sequencing has further identified several gene variants associated with AIH-ATD, particularly within the HLA-DR gene loci.15,45 HLA-DR3, specifically the DRB1*03 allele, is significantly associated with AITD, especially GD (RR = 3.4, P = 0.00032).46 However, there is a discrepancy regarding the strength of association between HT and HLA-DR3.46,47

Regulatory T cells have been reported to play a pivotal role in maintaining immune tolerance and preventing the activation of autoreactive T cells. When the function of regulatory T cells is impaired, autoreactive T cells target tissue-specific antigens, resulting in liver injury in AIH and thyroid damage in AIH-ATD. Immune dysregulation in AIH and AIH-ATD is further driven by expansion of Th cell subsets, particularly Th17 and Th22, which secrete IL-17 and IL-22, thereby amplifying thyroid cell injury and perpetuating inflammation in HT.48 Th1, Th2, and Th17 activity are also increased in GD and AIH, producing cytokines involved in inflammation and collagen production in GD orbitopathy.49 Similarly, in AIH, Th1 and Th17 cytokines contribute to inflammation, fibrosis, and collagen deposition in the liver, exacerbating the autoimmune response.

A case–control study of 163 patients with AIH and 1104 age- and gender-matched healthy controls proposed that the association between AIH and AITD may be mediated in part by the presence of serum anti-thyroid peroxidase antibodies.12 These were significantly more prevalent in AIH cohorts compared to controls (OR = 1.32, 95% CI: 0.87–1.98), suggesting shared immune pathways, although this particular study did not include the analysis of other autoantibody levels.12

Diagnostics

Elevated liver enzymes are usually the initial sign of AIH. This is often accompanied by elevated serum IgG levels. Other causes of elevated liver enzymes, such as viral hepatitis, drug-induced liver injury, metabolic dysfunction-associated steatotic liver disease (MASLD), primary sclerosing cholangitis (PSC), and primary biliary cholangitis (PBC), should be excluded. According to the guidelines from the American Association for the Study of Liver Diseases, ANA and ASMA antibodies should be checked in adults, while in children, LKM1 and antibodies against soluble liver antigen and liver cytosol 1 should also be tested.50 If these antibodies are positive, a liver biopsy can confirm the diagnosis of AIH with histologic evidence of interface hepatitis with plasma cell infiltration, lobular hepatitis, lymphocytes or plasma cells within the cytoplasm of hepatocytes (emperipolesis), and hepatocyte rosettes.9,51 If ANA and ASMA are negative, a liver biopsy should be pursued, as up to 20% of AIH cases may be seronegative.52 The Simplified Diagnostic Criteria from the International Autoimmune Hepatitis Group utilize ANA, ASMA, LKM1, and soluble liver antigen antibodies, IgG levels, liver histology, and exclusion of viral hepatitis to help distinguish probable from definite AIH. Imaging studies are not routinely used to diagnose AIH.9 Diagnosing AIH with concomitant thyroid dysfunction can be challenging due to overlapping laboratory findings. Hyperthyroidism can cause nonspecific elevation of serum liver enzymes. This may result directly from increased hepatocyte oxygen demand without increased hepatic perfusion, or indirectly from other organ involvement, such as hyperthyroid-induced heart failure, which may cause hepatic venous congestion and elevation of liver enzymes.53 In a study of 95 patients with hyperthyroidism, 72 had at least one liver enzyme abnormality, none of which were attributed to viral hepatitis or AIH. This underscores the need for a high index of suspicion when diagnosing concomitant AIH and consideration of liver biopsy in such patients.16,54 Hypothyroidism may also cause elevated ALT, AST, and GGT levels as a result of impaired lipid metabolism and the development of hepatic steatosis. These nonspecific liver enzyme elevations can mask possible concomitant AIH without liver biopsy.

Treatment

In patients with AIH and associated autoimmune diseases, therapeutic strategies largely involve immunosuppression to control hepatic inflammation while addressing disease-specific manifestations of the coexisting autoimmune condition. Guidelines from the American Association for the Study of Liver Diseases recommend first-line treatment of AIH with prednisone or a combination of prednisone and azathioprine to induce remission.17,55,56 This combination has shown superior efficacy in maintaining remission compared to monotherapy and is widely accepted in clinical guidelines as the mainstay treatment in AIH with associated autoimmune diseases, although there are specific differences in treatment strategies for each AIH-associated autoimmune disease that will be discussed in this review.57–61 In patients intolerant to azathioprine, alternatives include 6-mercaptopurine or mycophenolate mofetil, although evidence remains limited and is largely based on observational data. Alternative therapies for treating AIH beyond steroid therapy include cyclophosphamide, methotrexate, and biologics such as rituximab or infliximab. However, the risks and benefits should be discussed due to the risk of infection and other serious complications, particularly in patients with underlying liver dysfunction. Additionally, biologic agents such as infliximab, natalizumab, and adalimumab have been linked to drug-induced AIH.2,62 The definitive treatment for cirrhotic patients with AIH is liver transplantation.18

There are no established guidelines for treating AIH-ATD. Case reports suggest that glucocorticoids may improve liver enzyme and thyroid hormone levels in AIH with coexisting GD, likely due to corticosteroid-mediated suppression of thyroid-stimulating hormone secretion and reduced peripheral conversion of T4 to T3. In one case report, a patient with AIH, HT, and multiple sclerosis showed clinical and laboratory improvement with glucocorticoid and azathioprine therapy. Another case report demonstrated improved liver function and polyserositis with ursodeoxycholic acid and methylprednisolone in a patient with AIH and HT.63,64 Sodium L-thyroxine replacement, along with steroids and azathioprine, resulted in normalization of thyroid and serum liver enzyme levels in a case report of a patient with AIH, HT, and vitiligo.65

In a review of 11 cases of patients with AIH-GD, radioactive iodine was used in seven cases, two of which developed progression of AIH requiring glucocorticoid therapy. Four patients were treated solely with corticosteroids and achieved sustained remission of both GD and AIH. One patient was initially treated with corticosteroids, which led to remission of AIH but had recurrence of GD with steroid taper. Glucocorticoid therapy remains one of the preferred and effective therapies in AIH-HT. Because of the limited efficacy of glucocorticoids in GD, they may only be effective for their anti-inflammatory properties in AIH. Therefore, separate treatment of GD should not be overlooked.66

AIH-associated type 1 diabetes mellitus (T1DM)

Supportive evidence and epidemiology

The prevalence of AIH-T1DM has been reported to range between 1% and 10%.10 A meta-analysis of 77 studies estimated the pooled prevalence of T1DM in AIH at 3.8%, although statistical significance was not reported.19 However, heterogeneity among the included studies was high. A large US population database study also found a statistically significant higher likelihood of T1DM in patients with AIH compared to the general population (P < 0.0001), supporting an association between AIH and T1DM.8

Proposed pathogenic mechanisms

Allelic variants of DR3, such as DRB1*03:01, have been described as risk factors for AIH. These variants are also associated with increased susceptibility to T1DM alone.19 A genome-wide association study of 649 AIH-1 patients and 13,436 controls identified HLA-DRB1*0301 as the primary susceptibility genotype (P = 5.3 × 10−49) and HLA-DRB1*0401 as a secondary susceptibility genotype (P = 2.8 × 10−18). The strengths of this study include its large sample size and robust statistical significance. Additionally, a meta-analysis of 14 studies (5,196 T1DM cases and 6,359 controls) computed a summary OR of 6.32 for the DR3 homozygous haplotype, suggesting a high risk for T1DM. While HLA-DR3 is associated with increased risk for both AIH and T1DM individually, studies exploring the risk of concurrent disease are limited.19

Diagnostics

Elevated liver enzymes commonly observed in AIH can also occur in T1DM patients due to various hepatic complications. For instance, glycogenic hepatopathy, a condition characterized by excessive glycogen accumulation in hepatocytes, is a recognized complication of poorly controlled T1DM and presents with elevated liver enzymes and hepatomegaly. Additionally, MASLD is prevalent among individuals with T1DM and can lead to similar elevations in liver enzymes. These overlapping hepatic manifestations necessitate a careful diagnostic workup to distinguish between liver enzyme elevations due to AIH and those resulting from diabetes-related liver conditions.67 Leeds et al. found that elevated ALT levels were associated with factors such as poor glycemic control, age, and elevated triglycerides. Elevations in ALT can mimic the biochemical profile seen in AIH, complicating a timely diagnosis of autoimmune liver injury.68 In a cross-sectional study, Jensen et al. found that patients with AIH exhibited increased levels of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide hormones, whereas patients with MASLD did not demonstrate significantly altered incretin responses. These findings may help in differentiating AIH from MASLD associated with T1DM.69

In patients where AIH and MASLD are difficult to distinguish, obtaining a liver biopsy is essential. MASLD histologically presents with ballooning degeneration of hepatocytes and steatosis-hepatocytes containing large lipid vacuoles that peripherally displace the nuclei. Mallory-Denk bodies may also be seen in the cytoplasm.70 In contrast, histologic findings in AIH demonstrate interface activity portal tracts with lymphocytic inflammation rich in plasma cells that extends from the portal tract to the lobular parenchyma, characteristic of AIH. Emperipolesis (the presence of lymphocytes or plasma cells within the cytoplasm of hepatocytes) and hepatic rosette formation may also be seen.

Treatment

Treatment of concomitant AIH and T1DM can be challenging, as steroid therapy in AIH can often lead to hyperglycemia and contribute to worsening diabetes. These patients may require significantly higher doses of insulin than those without AIH.19

Therefore, non-steroidal or steroid-sparing maintenance options, including azathioprine, 6-mercaptopurine, or low-dose systemic steroids such as budesonide, should be considered as alternatives. These therapies can reduce risks of hyperglycemia and hyperglycemia-related morbidity. Azathioprine is preferred for AIH remission maintenance therapy but should be used cautiously in acutely jaundiced patients given its potential hepatotoxicity. It is typically started after a response to corticosteroid therapy has been established.57 6-mercaptopurine (an azathioprine metabolite) may also be an alternative therapy if azathioprine is not well tolerated. For patients who do not tolerate azathioprine or 6-mercaptopurine, mycophenolate mofetil can be used as a second-line option with similar efficacy. Long-term maintenance therapy includes low-dose corticosteroids alone or in combination with azathioprine.57

Identifying the primary autoimmune disease to guide immunosuppressive therapy can be clinically challenging. Immunosuppressive therapies generally target AIH to decrease the risk of progressive liver injury, while the autoimmune-mediated destruction of pancreatic beta cells is largely completed by the time T1DM manifests, thus minimizing the therapeutic benefit of immunosuppressive therapy for T1DM. Treatment of AIH with immunosuppressive therapy should be prioritized, with interdisciplinary support from endocrinology to guide the management of diabetes.58

AIH-associated autoimmune hepatobiliary and gastrointestinal diseases

The association between AIH and hepatobiliary diseases such as PSC and PBC, and how they coexist, remains controversial. There are several theories regarding the relationship between AIH and autoimmune hepatobiliary diseases: 1. AIH and PBC/PSC are two separate disease processes that present together. 2. AIH and PBC/PSC represent a “middle ground” on a continuum between AIH and other autoimmune liver diseases. 3. AIH and PBC/PSC together constitute a unique entity of their own. 4. There is a primary disease state with overriding features, such as AIH with biliary features.71 AIH has also been reported to be associated with several gastrointestinal autoimmune conditions, including inflammatory bowel disease (IBD) and celiac disease.

AIH-PBC

Supportive evidence and epidemiology

The Paris criteria are used to identify patients with overlapping features of AIH and PBC.9,37 Patients meeting two of the three PBC criteria and two of the three AIH criteria fulfill the Paris criteria, although this approach may underestimate the true prevalence of AIH-PBC.20 Historically, prevalence has been reported between 2% and 20%, but recent studies suggest it is lower. One study reviewing data from 609 patients with PBC and/or 15 patients with AIH over six years found that only 1% met the Paris criteria.21 Statistical significance was not reported. Studies using the revised International Autoimmune Hepatitis Group (IAIHG) criteria for AIH-PBC have reported prevalence ranging from 2.1% to 19%, with a reduction to 4% after excluding “female gender” and the presence of other autoimmune disorders, thus reducing discriminative power.22 These studies also did not report statistical significance, likely due to the rarity of this presentation, controversial diagnostic criteria, and shared histologic features that complicate diagnosis. Therefore, a significant association has not been established.

AIH-PSC

Supportive evidence and epidemiology

The United Network for Organ Sharing database of patients who underwent liver transplant for PSC identified a higher prevalence of AIH-PSC in patients aged 18–39 years (2.1%, mean age 25) compared to those aged 40–59 years (1%).71 While AIH alone is more common in females and PSC is more prevalent in males, the sex predominance in AIH-PSC remains controversial.71,73

A meta-analysis of population-based studies from North America, Asia, Europe, and Oceania revealed a prevalence of PSC of 13.53 per 100,000 persons (95% CI, 10.20–17.94).74 AIH alone had a prevalence of 17.44 per 1,000,000. Reported prevalence of AIH-PSC has ranged from 2% to 10%.71,75 In a study of 79 AIH patients, 10% had evidence of PSC on magnetic resonance cholangiography with minimal interpreter variability (Cohen’s kappa = 0.87).23 A study of 114 PSC patients (confirmed by endoscopic retrograde cholangiopancreatography) found 2% classified as “definite” AIH based on the IAIHG scoring system.72 Utilizing the modified IAIHG score, a retrospective study found 8% of PSC patients with overlap syndrome.24 Because this simplified IAIHG criteria have shown higher specificity for AIH,76 it is currently not recommended to use the original IAIHG scoring system. However, precise diagnostic criteria for AIH-PSC overlap have yet to be established.71,24 With statistical significance for AIH-PSC overlap unavailable, a significant association, therefore, has not been established.

AIH-associated inflammatory bowel disease: Crohn disease and ulcerative colitis (UC)

Supportive evidence and epidemiology of AIH-associated Crohn disease

A US national cohort study found 3.1% of patients with Crohn disease had AIH. This study identified statistically significantly higher odds of Crohn disease in AIH patients compared to those without (P < 0.0001).8 A retrospective study reported that 5% of IBD patients also had AIH, and 28.6% of those had Crohn disease.25 A Mendelian randomization study observed a significant positive relationship between Crohn disease and AIH with an inverse variance–weighted odds ratio (P = 0.045).25

Supportive evidence and epidemiology of AIH-UC

A US national cohort study (2014–2019) found that 3.8% of AIH patients had UC, with significantly higher odds of UC observed in AIH patients compared to those without (P < 0.0001).8 Among AIH and IBD patients, 71.4% had UC.25 A study of 105 patients with severe AIH identified 16% with chronic UC.77 Mendelian randomization revealed a significant positive relationship between UC and AIH (P = 0.038). In the replication analysis, results were conflicting, but a positive association between UC and AIH risk was confirmed (P = 2.90 × 10−6).25 The Mendelian analysis and replication analysis supported a significant association between UC and AIH risk.

Proposed pathogenic mechanisms

The “leaky gut” hypothesis has been suggested to explain how intestinal barrier disruption in UC and Crohn disease may contribute to the development of AIH. In UC and Crohn disease, intestinal inflammation exacerbates permeability, compromising the mucosal lining and enabling immune responses that affect the liver.25,78 IL-17, a pro-inflammatory cytokine, plays a key role in inflammation, fibrosis, and collagen production in AIH. Th cells dysregulate IL-17 release, and its reduction through anti-IL-17A therapy has been shown to reduce hepatic fibrosis.79

Studies on Lactobacillus suggest that the gut microbiome influences the hepatic autoimmune response.79,80 One study observed increased serum IL-17 levels and liver inflammatory cell infiltration in mice injected with Lactobacillus gasseri. In contrast, reducing serum IL-17 with anti-γδ T-cell receptor therapy mitigated liver fibrosis.79 The aryl hydrocarbon receptor signaling pathway has also been implicated in AIH-like pathology in mouse models.81 Lactobacillus was found to release aryl hydrocarbon receptor ligands (indole-3-aldehyde), promoting CD8 T-cell differentiation and contributing to AIH-like pathology.81 These findings support a role of the gut microbiome in the development of AIH.81

Diagnostics

AIH-UC poses diagnostic challenges due to overlapping clinical, serological, and histological features with other autoimmune liver diseases. PSC, a known coexisting hepatobiliary disease with UC, can present with cholestatic liver patterns similar to those seen in AIH.82 Approximately 10% of patients with AIH can present with histologic features of biliary duct injury.83 Histologically, AIH presents with significant interface hepatitis, which can also be seen in PSC. PSC shares overlapping serologic patterns of reactivity with AIH, such as ANA and ASMA positivity, making it difficult to distinguish between AIH and PSC, and between AIH-PSC associated with UC.82 Differentiating between AIH and PSC in patients with UC can be challenging, as the initial clinical presentation, laboratory testing, and histologic findings may not clearly distinguish the two.77 Pediatric patients with autoimmune liver disease and IBD may initially present with complications of portal hypertension, such as esophagogastric variceal bleeding. A multidisciplinary team is essential for the appropriate management of these patients.84 Studies have found that 11% to 49% of patients with UC or Crohn disease presented with elevations in serum AST, ALT, and/or ALP.85

Treatment of AIH-UC

Treatment for AIH is similar in patients with and without associated UC or Crohn disease.17 AIH-UC is generally managed in the same way as AIH alone. Data are limited on whether the clinical course of AIH differs between patients with and without IBD.86

Treatment of AIH-Crohn disease

There is limited literature on the efficacy and outcomes of treating Crohn disease associated with AIH. One case described a patient with AIH who was maintained on azathioprine and prednisone and subsequently developed PSC and biopsy-proven Crohn disease. She was treated for PSC with mycophenolate mofetil and ursodeoxycholic acid and was temporarily given a TNF blocker and methotrexate for Crohn disease. The patient did not tolerate this regimen, and her liver enzymes rose. She ultimately achieved and maintained remission on 6-mercaptopurine alone. The authors of this case report suggest treating each disease entity separately and adjusting medications based on tolerability, as there are no current guidelines for managing concurrent disease.87

AIH-associated celiac disease

Supportive evidence and epidemiology

The prevalence of AIH-associated celiac disease has been reported to range from 3% to 6%.26 A cohort study of 460 patients with AIH found that 2.8% had celiac disease, based on the presence of IgA tissue transglutaminase and endomysial antibodies, compared to 0.35% in the general population. A meta-analysis of 567 individuals with AIH from eight different studies reported a pooled prevalence of biopsy-verified AIH-associated celiac disease of 3.5% (heterogeneity P = 0.874), compared to 1% in the general population. The strengths of this study include its large sample size and low heterogeneity.27 A separate meta-analysis of nine studies involving 2,046 pediatric patients found a pooled prevalence of 6.35% (95% CI, 3.87–11.7). This study was statistically significant and had a robust sample size.28 These findings suggest a strong association between AIH and celiac disease.

Proposed pathogenic mechanisms

The pathogenic mechanisms of AIH-associated celiac disease remain poorly understood. Celiac disease shares genetic risk factors with AIH, particularly the presence of HLA class II genes (HLA-DQ2 and HLA-DQ8).88 In celiac disease, DQ2 and DQ8 on antigen-presenting cells bind gluten peptide complexes, activating T cells specific to the small intestinal mucosa. This triggers both Th1 and Th2 responses, with IFN-γ production and B-cell clonal expansion, resulting in the production of anti-gliadin and anti-tissue transglutaminase antibodies.88 Gluten itself does not appear to have a direct effect on the pathogenesis of AIH-associated celiac disease.17

Korponay-Szabo et al. investigated the interaction of celiac IgA autoantibodies with transglutaminase 2 in vivo. The study demonstrated that celiac IgA autoantibodies also bind to transglutaminase 2 in extraintestinal tissues, including the liver, lymph nodes, and muscles, potentially contributing to the extraintestinal manifestations of celiac disease.89

Diagnostics

The primary diagnostic challenge in AIH-associated celiac disease is distinguishing liver abnormalities related to celiac disease itself (celiac hepatitis) from those resulting from autoimmune liver disease. Elevated aminotransferase levels in celiac disease can be related to gluten exposure and may improve with a gluten-free diet (GFD). Persistently elevated liver enzymes despite strict avoidance of gluten suggest a concurrent autoimmune liver process, which complicates the diagnosis.90

Re-evaluation of liver enzymes six to twelve months after initiating a strict GFD can aid in diagnosis, as persistent elevation may indicate coexisting autoimmune liver disease and warrant further evaluation. Liver biopsy can help differentiate AIH from celiac hepatitis, as the latter typically shows steatosis, Kupffer cell hyperplasia, or mild lobular and portal tract inflammation without plasma cell infiltration. Response to dietary treatment may require up to 12 months. Failure to improve with diet suggests an alternative diagnosis.90

Treatment

A GFD is recommended for AIH-associated celiac disease, but its effect on AIH itself remains unclear. Nastasio et al. studied 79 patients with AIH, 15 of whom had celiac disease and were treated with prednisone and either azathioprine or cyclosporine in addition to a GFD. Of these 15 patients, 33% achieved sustained immunosuppressant-free remission of AIH compared to 8% of AIH patients without celiac disease (P < 0.05).60

Volta et al. presented a case of a patient with celiac disease and persistently elevated aminotransferases despite being on a GFD for one year. Small bowel biopsies revealed no active celiac disease, and celiac disease-related antibodies were negative, suggesting adherence to the GFD. Despite this, liver biopsy continued to show active chronic hepatitis with lymphocytic and plasma cell periportal infiltration. She was started on methylprednisolone and azathioprine and achieved normalization of aminotransferases at 18 months.91

Di Biase et al. studied seven children with AIH and celiac disease on a GFD treated with steroids and azathioprine for five years and observed normalization of aminotransferases. Six of these patients underwent repeat liver biopsy, which revealed no interface hepatitis, and only two showed evidence of mild inflammation, suggesting improved liver histology.92 These studies suggest benefits from treating AIH-associated celiac disease with a combination of steroids and azathioprine rather than GFD alone.

In a study of 166 patients diagnosed with AIH, 5.4% had histologic confirmation of celiac disease. Patients with AIH-associated celiac disease required significantly lower doses of prednisone at two-year follow-up (2.5 vs 5 mg/day, P = 0.007) and were more likely to discontinue steroid therapy by three years (83% vs 1%, P = 0.007) compared to AIH patients without celiac disease. Long-term observation revealed higher rates of immunosuppressive therapy withdrawal in AIH-associated celiac disease patients (44% vs. 13%, P = 0.01).61

AIH-associated rheumatologic disease

AIH-associated systemic lupus erythematosus (SLE)

Supportive evidence and epidemiology

AIH-SLE must fulfill the American College of Rheumatology criteria for SLE and the IAIHG criteria for AIH.29 The reported prevalence of AIH-SLE varies widely, ranging from 1.6% to 15%.30,93 A retrospective analysis found that 72.3% of 147 SLE patients met the IAIHG criteria for AIH; however, only 13.8% had liver biopsies consistent with AIH, suggesting potential overestimation of AIH-SLE cases.30

A 10-year retrospective analysis identified 805 patients with SLE, of whom only five (0.6%) had coexisting AIH. These patients, all female, were diagnosed between ages 22 and 57 years.31 Similarly, among 562 patients with AIH in another study, 3.3% with AIH-1 and 3.1% with AIH-2 had concomitant SLE, although this was not statistically significant. However, a US national population study reported a significant association between SLE and AIH (P < 0.0001),8 with a greater frequency than expected from the prevalence of the individual diseases. This suggests an association between AIH and SLE, although the clinical relevance remains uncertain given the variable prevalence estimates. As available data are limited to low-evidence studies, the association remains speculative.

Liver involvement by SLE remains controversial. “Lupus hepatitis” has been suggested as a mild disease process that is often asymptomatic, characterized by elevated transaminase levels that respond to corticosteroids during SLE flares.94 Zheng et al. reported mostly mild to moderate aminotransferase elevations, while alkaline phosphatase and gamma-glutamyl transferase elevations were rarer. Anti-ribosomal P levels were also higher in patients with lupus hepatitis.95 Diagnostic findings of lupus hepatitis are usually distinct from the diagnostic criteria and typical histologic features of AIH.94

AIH-associated rheumatoid arthritis (RA)

Supportive evidence and epidemiology

Among patients with AIH, 1.6% to 5.4% have been reported to have concomitant RA.30 Teufel et al. analyzed 278 patients diagnosed with AIH, of whom 1.8% had concomitant RA.35 Al-Chalabi et al. identified RA in 4.4% of AIH patients under 60 years old and 7.8% of individuals over 60 years, although statistical significance was not established.32 Similarly, a retrospective study of 562 patients with AIH found RA in 3.9% of patients with AIH-1, but this lacked statistical significance and was limited by low-level evidence. Therefore, an association is not supported.33

Differentiating AIH from RA-related liver involvement can be challenging, although histologic findings in RA-related liver damage are usually distinct from AIH, including centrilobular lipofuscin deposits, granulomas, regenerative Kupffer cell hyperplasia, portal inflammation, and fibrosis. Vascular involvement may also be present in rheumatoid vasculitis, which can affect hepatic vessels and rarely lead to intrahepatic hemorrhage.96

AIH-associated Sjögren syndrome (SS)

Supportive evidence and epidemiology

There are few reported cases of AIH-SS and limited literature on SS in AIH.97–99 A US national cohort study (2014–2019) found a 4.9% prevalence of SS among individuals with AIH, although statistical significance was not provided. AIH patients had significantly higher odds of SS compared to patients without AIH (P < 0.0001).8 This study had notable limitations: liver biopsy confirmation of AIH was documented in only one-third of patients, raising concerns about diagnostic accuracy. Additionally, patients treated at multiple healthcare institutions may have been counted multiple times, leading to a false representation of the true population. Given these limitations, reliance on a single population study, and the low-evidence nature of available cases, an association between AIH and SS cannot be conclusively established. Matsumoto et al. compared AIH patients with and without primary SS and found a significantly higher degree of portal inflammation in those with primary SS (P = 0.006).100

AIH-associated dermatological disease

Vitiligo is one of the most commonly seen autoimmune skin disorders in patients with AIH.18 Less common skin conditions with probable associations include psoriasis and alopecia areata. Studies of psoriasis and its association with AIH are limited in accuracy due to suboptimal methodology for diagnosing AIH and failure to exclude anti-TNF agents (used to treat psoriasis) as triggers for developing AIH. While liver disease has been analyzed in psoriasis, limited literature exists specifically regarding psoriasis in AIH.

AIH-associated vitiligo

Supportive evidence and epidemiology

A study in India examining 41 AIH cases found a 5% prevalence of concomitant vitiligo, which was ten times higher than in the general population. However, not all patients underwent liver biopsy, limiting the accuracy of AIH diagnosis. In a case series of 143 patients, 82% had pediatric-onset AIH; vitiligo was reported in 1% of AIH-1 cases and 4% of AIH-2 cases.18 In another study from Western India, vitiligo was present in one (1.2%) of 79 patients with AIH.34 These studies are limited by small sample sizes, low-evidence case reports, and lack of specified statistical significance, leaving the association between vitiligo and AIH uncertain.

Other rare extrahepatic autoimmune diseases of unclear significance

Other rarer extrahepatic autoimmune diseases have been observed in AIH, including hematologic disorders (idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, pernicious anemia, and antiphospholipid syndrome), neurologic disorders (multiple sclerosis, mononeuritis multiplex), and pulmonary disorders (fibrosing alveolitis, pulmonary fibrosis, sarcoidosis). However, these are scarce, with a reported prevalence of 1% or less, and lack statistical significance to suggest a true association.10

Outcomes

In a study of 2,479 patients with AIH, nearly 20% had at least one extrahepatic autoimmune disease. Patients with extrahepatic autoimmune comorbidities had higher mortality compared to those without [hazard ratio 1.3 (95% CI: 1.12–1.52)], with even higher mortality observed in those with more than one extrahepatic autoimmune disease. These findings highlight the importance of not only treating the underlying AIH but also adopting an interdisciplinary approach to address concomitant disease processes.101

Conclusions

Our review indicates that associations of AIH with AITD, T1DM, UC, Crohn disease, and celiac disease appear to be significant. However, associations between AIH and PSC/PBC, RA, SLE, SS, and vitiligo are not well-supported. Diagnostic criteria in some cases are based on scoring systems, but most depend on the established criteria of each individual disease. Treatment of combined AIH and other diseases in most reports resembles treatment of AIH alone, typically including corticosteroid therapy, often in combination with purine analogs. However, a multidisciplinary approach to managing multi-organ involvement is highly recommended.

Declarations

Acknowledgement

This work was made possible by the Herman Lopata Chair in Hepatitis Research.

Funding

None to declare.

Conflict of interest

GYW has been an Editor-in-Chief of the Journal of Clinical and Translational Hepatology since 2013. He has no role in the publisher’s decisions regarding this manuscript. DZ has no conflicts of interest related to this publication.

Authors’ contributions

Review concept (GYW), information collection, drafting of the manuscript (DZ), and revision of the manuscript (GYW, DZ). All authors have approved the final version and publication of the manuscript.

References

  1. Mercado LA, Gil-Lopez F, Chirila RM, Harnois DM. Autoimmune Hepatitis: A Diagnostic and Therapeutic Overview. Diagnostics (Basel) 2024;14(4):382 View Article PubMed/NCBI
  2. Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021;22(24):13578 View Article PubMed/NCBI
  3. Teufel A, Galle PR, Kanzler S. Update on autoimmune hepatitis. World J Gastroenterol 2009;15(9):1035-1041 View Article PubMed/NCBI
  4. Wang M, Zhang H. The pathogenesis of autoimmune hepatitis. Front Lab Med 2018;2(1):36-39 View Article
  5. Komori A. Recent updates on the management of autoimmune hepatitis. Clin Mol Hepatol 2021;27(1):58-69 View Article PubMed/NCBI
  6. Abe M, Mashiba T, Zeniya M, Yamamoto K, Onji M, Tsubouchi H, et al. Present status of autoimmune hepatitis in Japan: a nationwide survey. J Gastroenterol 2011;46(9):1136-1141 View Article PubMed/NCBI
  7. Lv T, Li M, Zeng N, Zhang J, Li S, Chen S, et al. Systematic review and meta-analysis on the incidence and prevalence of autoimmune hepatitis in Asian, European, and American population. J Gastroenterol Hepatol 2019;34(10):1676-1684 View Article PubMed/NCBI
  8. Tunio NA, Mansoor E, Sheriff MZ, Cooper GS, Sclair SN, Cohen SM. Epidemiology of Autoimmune Hepatitis (AIH) in the United States Between 2014 and 2019: A Population-based National Study. J Clin Gastroenterol 2021;55(10):903-910 View Article PubMed/NCBI
  9. Mack CL, Adams D, Assis DN, Kerkar N, Manns MP, Mayo MJ, et al. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology 2020;72(2):671-722 View Article PubMed/NCBI
  10. Wong GW, Heneghan MA. Association of Extrahepatic Manifestations with Autoimmune Hepatitis. Dig Dis 2015;33(Suppl 2):25-35 View Article PubMed/NCBI
  11. Malik R, Hodgson H. The relationship between the thyroid gland and the liver. QJM 2002;95(9):559-569 View Article PubMed/NCBI
  12. Khoury T, Kadah A, Mari A, Sbeit W, Drori A, Mahamid M. Thyroid Dysfunction is Prevalent in Autoimmune Hepatitis: A Case Control Study. Isr Med Assoc J 2020;22(2):100-103 PubMed/NCBI
  13. Oliveira LC, Porta G, Marin ML, Bittencourt PL, Kalil J, Goldberg AC. Autoimmune hepatitis, HLA and extended haplotypes. Autoimmun Rev 2011;10(4):189-193 View Article PubMed/NCBI
  14. Umemura T, Katsuyama Y, Yoshizawa K, Kimura T, Joshita S, Komatsu M, et al. Human leukocyte antigen class II haplotypes affect clinical characteristics and progression of type 1 autoimmune hepatitis in Japan. PLoS One 2014;9(6):e100565 View Article PubMed/NCBI
  15. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun 2004;5(3):203-208 View Article PubMed/NCBI
  16. Lee YJ, Sung JY, Kim SH, Yi HS, Kim YS, Lee S, et al. A Case of Hashimoto’s Thyroiditis Accompanied by Autoimmune Hepatitis Diagnosed with Liver Biopsy. J Korean Endocr Soc 2009;24(4):287-292 View Article
  17. Nassar R, Waisbourd-Zinman O. Autoimmune liver disease in gastrointestinal conditions. Clin Liver Dis (Hoboken) 2022;20(4):108-110 View Article PubMed/NCBI
  18. Terziroli Beretta-Piccoli B, Invernizzi P, Gershwin ME, Mainetti C. Skin Manifestations Associated with Autoimmune Liver Diseases: a Systematic Review. Clin Rev Allergy Immunol 2017;53(3):394-412 View Article PubMed/NCBI
  19. Jensen AH, Ytting H, Winther-Sørensen M, Burisch J, Bergquist A, Gluud LL, et al. Autoimmune liver diseases and diabetes. Eur J Gastroenterol Hepatol 2023;35(9):938-947 View Article PubMed/NCBI
  20. Stoelinga AEC, Biewenga M, Drenth JPH, Verhelst X, van der Meer AJP, de Boer YS, et al. Diagnostic criteria and long-term outcomes in AIH-PBC variant syndrome under combination therapy. JHEP Rep 2024;6(7):101088 View Article PubMed/NCBI
  21. Bonder A, Retana A, Winston DM, Leung J, Kaplan MM. Prevalence of primary biliary cirrhosis-autoimmune hepatitis overlap syndrome. Clin Gastroenterol Hepatol 2011;9(7):609-612 View Article PubMed/NCBI
  22. Boberg KM, Chapman RW, Hirschfield GM, Lohse AW, Manns MP, Schrumpf E, et al. Overlap syndromes: the International Autoimmune Hepatitis Group (IAIHG) position statement on a controversial issue. J Hepatol 2011;54(2):374-385 View Article PubMed/NCBI
  23. Abdalian R, Dhar P, Jhaveri K, Haider M, Guindi M, Heathcote EJ. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: evaluating the role of routine magnetic resonance imaging. Hepatology 2008;47(3):949-957 View Article PubMed/NCBI
  24. van Buuren HR, van Hoogstraten HJE, Terkivatan T, Schalm SW, Vleggaar FP. High prevalence of autoimmune hepatitis among patients with primary sclerosing cholangitis. J Hepatol 2000;33(4):543-548 View Article PubMed/NCBI
  25. Chi G, Pei J, Li X. Inflammatory bowel disease and risk of autoimmune hepatitis: A univariable and multivariable Mendelian randomization study. PLoS One 2024;19(6):e0305220 View Article PubMed/NCBI
  26. Lauret E, Rodrigo L. Celiac disease and autoimmune-associated conditions. Biomed Res Int 2013;2013:127589 View Article PubMed/NCBI
  27. Haggård L, Glimberg I, Lebwohl B, Sharma R, Verna EC, Green PHR, et al. High prevalence of celiac disease in autoimmune hepatitis: Systematic review and meta-analysis. Liver Int 2021;41(11):2693-2702 View Article PubMed/NCBI
  28. Vajro P, Paolella G, Maggiore G, Giordano G. Pediatric celiac disease, cryptogenic hypertransaminasemia, and autoimmune hepatitis. J Pediatr Gastroenterol Nutr 2013;56(6):663-670 View Article PubMed/NCBI
  29. Afzal W, Haghi M, Hasni SA, Newman KA. Lupus hepatitis, more than just elevated liver enzymes. Scand J Rheumatol 2020;49(6):427-433 View Article PubMed/NCBI
  30. Efe C, Purnak T, Ozaslan E, Ozbalkan Z, Karaaslan Y, Altiparmak E, et al. Autoimmune liver disease in patients with systemic lupus erythematosus: a retrospective analysis of 147 cases. Scand J Gastroenterol 2011;46(6):732-737 View Article PubMed/NCBI
  31. Wang CR, Tsai HW, Wu IC. Systemic lupus erythematosus and autoimmune hepatitis overlap disease in a hospitalized systemic lupus erythematosus cohort. J Formos Med Assoc 2024;123(10):1110-1114 View Article PubMed/NCBI
  32. Al-Chalabi T, Boccato S, Portmann BC, McFarlane IG, Heneghan MA. Autoimmune hepatitis (AIH) in the elderly: a systematic retrospective analysis of a large group of consecutive patients with definite AIH followed at a tertiary referral centre. J Hepatol 2006;45(4):575-583 View Article PubMed/NCBI
  33. Wong GW, Yeong T, Lawrence D, Yeoman AD, Verma S, Heneghan MA. Concurrent extrahepatic autoimmunity in autoimmune hepatitis: implications for diagnosis, clinical course and long-term outcomes. Liver Int 2017;37(3):449-457 View Article PubMed/NCBI
  34. Amarapurkar DN, Patel ND. Spectrum of autoimmune liver diseases in western India. J Gastroenterol Hepatol 2007;22(12):2112-2117 View Article PubMed/NCBI
  35. Teufel A, Weinmann A, Kahaly GJ, Centner C, Piendl A, Wörns M, et al. Concurrent autoimmune diseases in patients with autoimmune hepatitis. J Clin Gastroenterol 2010;44(3):208-213 View Article PubMed/NCBI
  36. Vierling JM. Autoimmune Hepatitis and Overlap Syndromes: Diagnosis and Management. Clin Gastroenterol Hepatol 2015;13(12):2088-2108 View Article PubMed/NCBI
  37. Czaja AJ. Diagnosis and management of the overlap syndromes of autoimmune hepatitis. Can J Gastroenterol 2013;27(7):417-423 View Article PubMed/NCBI
  38. Bailey J, Sreepati G, Love J, Fischer M, Vuppalanchi R, Ghabril M, et al. Autoimmune Hepatitis With Inflammatory Bowel Disease Is Distinct and May Be More Refractory to Traditional Treatment: 504. Am J Gastroenterol 2014;109:S149 View Article
  39. van Gerven NM, Verwer BJ, Witte BI, van Erpecum KJ, van Buuren HR, Maijers I, et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol 2014;49(10):1245-1254 View Article PubMed/NCBI
  40. DeFilippis EM, Kumar S. Clinical Presentation and Outcomes of Autoimmune Hepatitis in Inflammatory Bowel Disease. Dig Dis Sci 2015;60(10):2873-2880 View Article PubMed/NCBI
  41. Saich R, Chapman R. Primary sclerosing cholangitis, autoimmune hepatitis and overlap syndromes in inflammatory bowel disease. World J Gastroenterol 2008;14(3):331-337 View Article PubMed/NCBI
  42. Gatselis NK, Zachou K, Koukoulis GK, Dalekos GN. Autoimmune hepatitis, one disease with many faces: etiopathogenetic, clinico-laboratory and histological characteristics. World J Gastroenterol 2015;21(1):60-83 View Article PubMed/NCBI
  43. Lapierre P, Alvarez F. Type 2 autoimmune hepatitis: Genetic susceptibility. Front Immunol 2022;13:1025343 View Article PubMed/NCBI
  44. Djilali-Saiah I, Fakhfakh A, Louafi H, Caillat-Zucman S, Debray D, Alvarez F. HLA class II influences humoral autoimmunity in patients with type 2 autoimmune hepatitis. J Hepatol 2006;45(6):844-850 View Article PubMed/NCBI
  45. Hirschfield GM, Karlsen TH. Genetic risks link autoimmune hepatitis to other autoimmune liver disease. Gastroenterology 2014;147(2):270-273 View Article PubMed/NCBI
  46. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Tomer Y. The influence of human leucocyte antigen (HLA) genes on autoimmune thyroid disease (AITD): results of studies in HLA-DR3 positive AITD families. Clin Endocrinol (Oxf) 2002;57(1):81-88 View Article PubMed/NCBI
  47. Mikosch P, Aistleitner A, Oehrlein M, Trifina-Mikosch E. Hashimoto’s thyroiditis and coexisting disorders in correlation with HLA status-an overview. Wien Med Wochenschr 2023;173(1-2):41-53 View Article PubMed/NCBI
  48. Weetman AP. An update on the pathogenesis of Hashimoto’s thyroiditis. J Endocrinol Invest 2021;44(5):883-890 View Article PubMed/NCBI
  49. Lanzolla G, Marinò M, Menconi F. Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol 2024;20(11):647-660 View Article PubMed/NCBI
  50. Di Giorgio A, D’Adda A, Marseglia A, Sonzogni A, Licini L, Nicastro E, et al. Biliary features in liver histology of children with autoimmune liver disease. Hepatol Int 2019;13(4):510-518 View Article PubMed/NCBI
  51. Covelli C, Sacchi D, Sarcognato S, Cazzagon N, Grillo F, Baciorri F, et al. Pathology of autoimmune hepatitis. Pathologica 2021;113(3):185-193 View Article PubMed/NCBI
  52. Washington MK. Autoimmune liver disease: overlap and outliers. Mod Pathol 2007;20(Suppl 1):S15-S30 View Article PubMed/NCBI
  53. Rana S, Ahmed Z, Salgia R, Bhan A. Successful Management of Patients with Co-existent Graves’ Disease and Autoimmune Hepatitis. Cureus 2019;11(5):e4647 View Article PubMed/NCBI
  54. Huang MJ, Li KL, Wei JS, Wu SS, Fan KD, Liaw YF. Sequential liver and bone biochemical changes in hyperthyroidism: prospective controlled follow-up study. Am J Gastroenterol 1994;89(7):1071-1076 PubMed/NCBI
  55. Villavicencio Kim J, Wu GY. Celiac Disease and Elevated Liver Enzymes: A Review. J Clin Transl Hepatol 2021;9(1):116-124 View Article PubMed/NCBI
  56. Goyes D, Malladi VR, Ishtiaq R, Al-Khazraji A. Case of autoimmune hepatitis with overlap systemic lupus erythematosus. BMJ Case Rep 2020;13(12):e237341 View Article PubMed/NCBI
  57. Parker R, Oo YH, Adams DH. Management of patients with difficult autoimmune hepatitis. Therap Adv Gastroenterol 2012;5(6):421-437 View Article PubMed/NCBI
  58. Makol A, Watt KD, Chowdhary VR. Autoimmune hepatitis: a review of current diagnosis and treatment. Hepat Res Treat 2011;2011:390916 View Article PubMed/NCBI
  59. Buechter M, Dorn D, Möhlendick B, Siffert W, Baba HA, Gerken G, et al. Characteristics and Long-Term Outcome of 535 Patients with Autoimmune Hepatitis-The 20-Year Experience of a High-Volume Tertiary Center. J Clin Med 2023;12(13):4192 View Article PubMed/NCBI
  60. Nastasio S, Sciveres M, Riva S, Filippeschi IP, Vajro P, Maggiore G. Celiac disease-associated autoimmune hepatitis in childhood: long-term response to treatment. J Pediatr Gastroenterol Nutr 2013;56(6):671-674 View Article PubMed/NCBI
  61. Pezzato F, D’Ovidio E, Perini L, Bonaiuto E, Rollo P, Catanzaro E, et al. People with autoimmune hepatitis and celiac disease have a milder liver disease course and a better chance of immunosuppressive treatment withdrawal. Dig Liver Dis 2023;55:S63 View Article
  62. Björnsson E, Talwalkar J, Treeprasertsuk S, Kamath PS, Takahashi N, Sanderson S, et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology 2010;51(6):2040-2048 View Article PubMed/NCBI
  63. Nadhem ON, Janabi MA, Omer AR, Wan B. Autoimmune hepatitis with multiple sclerosis and graves disease: coincidence or association?. Case Rep Gastroenterol 2014;8(2):319-323 View Article PubMed/NCBI
  64. Yu H, Qiu H, Pan J, Wang S, Bao Y, Jia W. Hashimoto’s thyroiditis concomitant with sequential autoimmune hepatitis, chorea and polyserositis: a new entity of autoimmune polyendocrine syndrome?. Intern Med 2013;52(2):255-258 View Article PubMed/NCBI
  65. Keskin M, Savaş-Erdeve Ş, Özbay-Hoşnut F, Kurnaz E, Çetinkaya S, Aycan Z. The first childhood case with coexisting Hashimoto thyroiditis, vitiligo and autoimmune hepatitis. Turk J Pediatr 2016;58(4):432-435 View Article PubMed/NCBI
  66. Patel AM, Stanback C, Vellanki P. Clinical Case Report: Dissociation of Clinical Course of Coexisting Autoimmune Hepatitis and Graves Disease. AACE Clin Case Rep 2021;7(1):36-39 View Article PubMed/NCBI
  67. Asada S, Kawaratani H, Mashitani T, Kaya D, Nishigori M, Kubo T, et al. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus. Intern Med 2018;57(8):1087-1092 View Article PubMed/NCBI
  68. Leeds JS, Forman EM, Morley S, Scott AR, Tesfaye S, Sanders DS. Abnormal liver function tests in patients with Type 1 diabetes mellitus: prevalence, clinical correlations and underlying pathologies. Diabet Med 2009;26(12):1235-1241 View Article PubMed/NCBI
  69. Jensen AH, Ytting H, Werge MP, Rashu EB, Hetland LE, Thing M, et al. Patients with autoimmune liver disease have glucose disturbances that mechanistically differ from steatotic liver disease. Am J Physiol Gastrointest Liver Physiol 2024;326(6):G736-G746 View Article PubMed/NCBI
  70. Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin Liver Dis 2016;20(2):293-312 View Article PubMed/NCBI
  71. Ricciuto A, Kamath BM, Hirschfield GM, Trivedi PJ. Primary sclerosing cholangitis and overlap features of autoimmune hepatitis: A coming of age or an age-ist problem?. J Hepatol 2023;79(2):567-575 View Article PubMed/NCBI
  72. Boberg KM, Fausa O, Haaland T, Holter E, Mellbye OJ, Spurkland A, et al. Features of autoimmune hepatitis in primary sclerosing cholangitis: an evaluation of 114 primary sclerosing cholangitis patients according to a scoring system for the diagnosis of autoimmune hepatitis. Hepatology 1996;23(6):1369-1376 View Article PubMed/NCBI
  73. Ballotin VR, Bigarella LG, Riva F, Onzi G, Balbinot RA, Balbinot SS, et al. Primary sclerosing cholangitis and autoimmune hepatitis overlap syndrome associated with inflammatory bowel disease: A case report and systematic review. World J Clin Cases 2020;8(18):4075-4093 View Article PubMed/NCBI
  74. Cooper J, Markovinovic A, Coward S, Herauf M, Shaheen AA, Swain M, et al. Incidence and Prevalence of Primary Sclerosing Cholangitis: A Meta-analysis of Population-based Studies. Inflamm Bowel Dis 2024;30(11):2019-2026 View Article PubMed/NCBI
  75. Lewin M, Vilgrain V, Ozenne V, Lemoine M, Wendum D, Paradis V, et al. Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: a prospective magnetic resonance imaging and histological study. Hepatology 2009;50(2):528-537 View Article PubMed/NCBI
  76. Alvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Cancado EL, et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 1999;31(5):929-938 View Article PubMed/NCBI
  77. Perdigoto R, Carpenter HA, Czaja AJ. Frequency and significance of chronic ulcerative colitis in severe corticosteroid-treated autoimmune hepatitis. J Hepatol 1992;14(2-3):325-331 View Article PubMed/NCBI
  78. Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023;9(1):361 View Article PubMed/NCBI
  79. Tedesco D, Thapa M, Chin CY, Ge Y, Gong M, Li J, et al. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology 2018;154(8):2178-2193 View Article PubMed/NCBI
  80. Lin H, Lin J, Pan T, Li T, Jiang H, Fang Y, et al. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis 2023;14(1):68 View Article PubMed/NCBI
  81. Pandey SP, Bender MJ, McPherson AC, Phelps CM, Sanchez LM, Rana M, et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis. Cell Host Microbe 2022;30(7):1003-1019.e10 View Article PubMed/NCBI
  82. Trivedi PJ, Hirschfield GM. Review article: overlap syndromes and autoimmune liver disease. Aliment Pharmacol Ther 2012;36(6):517-533 View Article PubMed/NCBI
  83. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis. J Hepatol 2015;63(4):971-1004 View Article PubMed/NCBI
  84. D’Antiga L, Betalli P, De Angelis P, Davenport M, Di Giorgio A, McKiernan PJ, et al. Interobserver Agreement on Endoscopic Classification of Oesophageal Varices in Children. J Pediatr Gastroenterol Nutr 2015;61(2):176-181 View Article PubMed/NCBI
  85. Mendes FD, Levy C, Enders FB, Loftus EV, Angulo P, Lindor KD. Abnormal hepatic biochemistries in patients with inflammatory bowel disease. Am J Gastroenterol 2007;102(2):344-350 View Article PubMed/NCBI
  86. Saubermann LJ, Deneau M, Falcone RA, Murray KF, Ali S, Kohli R, et al. Hepatic Issues and Complications Associated With Inflammatory Bowel Disease: A Clinical Report From the NASPGHAN Inflammatory Bowel Disease and Hepatology Committees. J Pediatr Gastroenterol Nutr 2017;64(4):639-652 View Article PubMed/NCBI
  87. Malik TA, Gutierrez AM, McGuire B, Zarzour JG, Mukhtar F, Bloomer J. Autoimmune hepatitis-primary sclerosing cholangitis overlap syndrome complicated by Crohn’s disease. Digestion 2010;82(1):24-26 View Article PubMed/NCBI
  88. Kagnoff MF. Overview and pathogenesis of celiac disease. Gastroenterology 2005;128(4 Suppl 1):S10-S18 View Article PubMed/NCBI
  89. Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Király R, Kovács JB, et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 2004;53(5):641-648 View Article PubMed/NCBI
  90. Maggiore G, Caprai S. Liver involvement in celiac disease. Indian J Pediatr 2006;73(9):809-811 View Article PubMed/NCBI
  91. Volta U, De Franceschi L, Lari F, Molinaro N, Zoli M, Bianchi FB. Coeliac disease hidden by cryptogenic hypertransaminasaemia. Lancet 1998;352(9121):26-29 View Article PubMed/NCBI
  92. Di Biase AR, Colecchia A, Scaioli E, Berri R, Viola L, Vestito A, et al. Autoimmune liver diseases in a paediatric population with coeliac disease - a 10-year single-centre experience. Aliment Pharmacol Ther 2010;31(2):253-260 View Article PubMed/NCBI
  93. Wang CR, Tsai HW. Autoimmune liver diseases in systemic rheumatic diseases. World J Gastroenterol 2022;28(23):2527-2545 View Article PubMed/NCBI
  94. Bessone F, Poles N, Roma MG. Challenge of liver disease in systemic lupus erythematosus: Clues for diagnosis and hints for pathogenesis. World J Hepatol 2014;6(6):394-409 View Article PubMed/NCBI
  95. Zheng RH, Wang JH, Wang SB, Chen J, Guan WM, Chen MH. Clinical and immunopathological features of patients with lupus hepatitis. Chin Med J (Engl) 2013;126(2):260-266 PubMed/NCBI
  96. Radovanović-Dinić B, Tešić-Rajković S, Zivkovic V, Grgov S. Clinical connection between rheumatoid arthritis and liver damage. Rheumatol Int 2018;38(5):715-724 View Article PubMed/NCBI
  97. Hoshino S, Yoshizawa T, Hayashi A, Ohkoshi N, Tamaoka A, Shoji S. A combination of autoimmune hepatitis, sensory-dominant peripheral neuropathy, and primary Sjögren’s syndrome in the same patient: a rare association. J Med 1999;30(1-2):83-92 PubMed/NCBI
  98. Yamada T, Fukui M, Kashiwagi T, Arai T, Itokawa N, Atsukawa M, et al. A Case of Sjögren’s Syndrome Complicated with Interstitial Nephritis and Delayed Onset Autoimmune Hepatitis. J Nippon Med Sch 2018;85(2):117-123 View Article PubMed/NCBI
  99. Wada T, Motoo Y, Ohmizo R, Terada T, Nakanuma Y. Association of mixed connective tissue disease, Sjögren’s syndrome and autoimmune hepatitis: report of a case. Jpn J Med 1991;30(3):278-280 View Article PubMed/NCBI
  100. Matsumoto T, Morizane T, Aoki Y, Yamasaki S, Nakajima M, Enomoto N, et al. Autoimmune hepatitis in primary Sjogren’s syndrome: pathological study of the livers and labial salivary glands in 17 patients with primary Sjogren’s syndrome. Pathol Int 2005;55(2):70-76 View Article PubMed/NCBI
  101. Birn-Rydder R, Jensen MD, Jepsen P, Grønbaek L. Extrahepatic autoimmune diseases in autoimmune hepatitis: Effect on mortality. Liver Int 2022;42(11):2466-2472 View Article PubMed/NCBI

About this Article

Cite this article
Zhao D, Wu GY. Autoimmune Hepatitis Associated with Other Autoimmune Diseases: A Critical Review. J Clin Transl Hepatol. Published online: Aug 27, 2025. doi: 10.14218/JCTH.2025.00153.
Copy        Export to RIS        Export to EndNote
Article History
Received Revised Accepted Published
April 9, 2025 June 27, 2025 July 7, 2025 August 27, 2025
DOI http://dx.doi.org/10.14218/JCTH.2025.00153
  • Journal of Clinical and Translational Hepatology
  • pISSN 2225-0719
  • eISSN 2310-8819
Back to Top

Autoimmune Hepatitis Associated with Other Autoimmune Diseases: A Critical Review

Danzhu Zhao, George Y. Wu
  • Reset Zoom
  • Download TIFF