IDH mutations in AML
AML is a heterogeneous hematologic malignancy, characterized by the accumulation of various somatic genetic abnormalities and of immature myeloid cells arrested at various stages of maturation. Studies carried out in the last 2 decades have led to the identification of two broad types of genetic mutations, which cooperate to support development of the leukemic process. The class I mutations confer a survival/growth advantage to hematopoietic stem cells (HSCs) and progenitor cells (HPCs), such as the mutations in NRAS or KRAS, the loss of NF1 or the mutations in FLT3 receptor tyrosine kinase. The class II mutations promote self-renewal and block the differentiation of HPCs, such as the t(8:21) fusion involving AML1-ETO or the t(15;17) fusion involving PML-RARα.
In 2009, Mardis and colleagues reported frequent occurrence of IDH1/2 gene mutations occurring in AMLs, a finding that was later confirmed by the Genome Atlas Research Network.46,47 These studies and others have provided evidence that IDH1/2 mutations occur in about 20% of AML patients, including 6–16% IDH1 mutations and 8–19% IDH2 mutations (Table 1). Many studies have reported the main features of IDH-mutated AMLs, providing evidence that these AMLs are characterized by a preferential occurrence in older patients, a preferential normal cytogenetic profile or other intermediate-risk cytogenetics, an increased percentage of leukemic blasts in the bone marrow and peripheral blood at diagnosis, a more frequent association with NPM1 and FLT3 mutations, a frequent association with DNMT3A mutation, and mutual exclusivity with TET2 and WT1 mutations.48–51
It is important to note that IDH1/2 mutations, together with DNMT3A and TET2 gene mutations, contribute to an overall occurrence in AMLs of >40% of the mutations in genes involved in the regulation of methylation of genomic DNA.52 Analyses of the prognostic impact of IDH mutations in AMLs emerged as a matter of great controversy, with contrasting evidence either supporting a positive, a negative or a neutral impact on AML prognosis (reviewed in 40).40 However, a recent study based on a large set of AML patients provided clear evidence that overall survival for IDH-WT AMLs and IDH-mutated AMLs is comparable.53
The large majority of leukemia-associated IDH1 and IDH2 mutations occur at the level of arginine residues present in the catalytic pocket of the enzyme, with the IDH1 mutations occurring mostly at arginine 132 (R132H or R132C or R132L or R132S or R132G) and those of IDH2 occurring mostly at arginine 172 or 140. These mutations confer to the mutant IDH1 or IDH2 protein a novel oncogenic enzymatic activity that is related to their capacity for allowing production of the R(-) enantiomer of the metabolite R-2-HG, which accumulates in IDH-mutant AMLs.54 It was suggested that R-2-HG could represent the oncogenic mediator of IDH mutants in the leukemogenetic process. α-KG is a cofactor of many of the deoxygenases involved in the regulation of various key biologic processes, including nucleic acid repair, hypoxic response, chromatin modification and fatty acid metabolism, while 2-HG acts as an inhibitor of these deoxygenases.55,56 According to these findings, however, the leukemogenetic role of R-2-HG remains unclear.57
It also remains to be demonstrated whether onco-metabolites such as R-2-HG play a causative role in leukemogenesis or, rather, are only simple biomarkers of oncogenic IDH mutants. However, a recent study using two mouse leukemic models and a patient-derived AML xenotransplantation model showed that R-2-HG, but not α-KG, is an onco-metabolite capable of inducing hyperleukocytosis and accelerating the onset of murine and human leukemias in vivo.54 Other studies have provided evidence to strongly support the role of serum 2-HG levels at diagnosis as a biomarker of IDH1/2-mutant AMLs; furthermore, the prognostic value of 2-HG levels post-induction have been shown in IDH1/2-mutant patients.58,59 Finally, a recent study carried out in 84 IDH-mutant AML patients showed that D-2-HG serum levels in IDH1-mutant, but not in IDH2-mutant, patients have a prognostic impact on outcome; this difference could be tentatively related to the different subcellular localizations of IDH1 and IDH2 enzymes.60
An increasing number of studies have provided evidence that IDH mutants exert their pro-oncogenic effect by interfering with the differentiation program of hematopoietic cells. Thus, in 2000, Figueroa and colleagues analyzed the effects on stable expression of either an IDH1 or IDH2 mutant allele on hematopoietic cell differentiation in the 32D cultured mouse cells or in primary mouse bone marrow cells; in both of these cellular systems, the expression of an IDH-mutant enzyme induced an increase in stem cell markers and impaired myeloid cell differentiation.61 Sasaki and colleagues reported the characterization of a conditional knock-in mouse model, in which the IDH1-R132H mutation was inserted into the murine IDH1 locus and expressed in all hematopoietic cells or specifically in cells of the myeloid lineage.62 These mutant mice displayed an increased number of early hematopoietic progenitors, impaired myeloid cell differentiation, anemia, splenomegaly and extramedullary hematopoiesis.62 The hematopoietic cells of these animals displayed hypermethylated histones and changes to DNA methylation that were similar to those observed in IDH-mutant AMLs.62 A third set of experiments provided evidence that enforced expression of an IDH-mutant enzyme in or exogenous administration of a soluble form of R-2-HG to the TF-1 human erythroleukemic cells promoted cytokine independence and blocked cell differentiation.63
Recent studies have helped to better define how IDH-mutant alleles affect hematopoietic cell differentiation in human leukemic cells. Particularly, several studies have shown that IDH-mutants affect the expression of some genes involved in retinol metabolism and/or signaling. Interestingly, for the four cancers in which IDH mutations are frequently observed, the RAR activation pathway is targeted by IDH-mutants, as shown by two lines of evidence. In the first, RBP1, a downstream target of RAR, was recently shown to become hypermethylated following expression of mutant-IDH1 gene in cell lines, and hypermethylation of the RBP1 gene promoter was shown to be associated with down-regulation of RBP1 expression in tumor cells.64,65 In the second, the RAR activation pathway was found to be affected in all tumor types associated with frequent IDH mutations (i.e. AML, LGG, chondrosarcoma and CCA), and the process was shown to involve two genes in AML, 17 genes in LGG, 14 genes in chondrosarcoma and 5 genes in CCA.66
A recent study by Boutzen and colleagues provided fundamental data towards understanding how IDH-mutants affect the differentiation program of hematopoietic cells.67 In fact, gene expression studies carried out on leukemic cells bearing mutant IDH enzymes have clearly shown that IDH1-R132H mutation primes leukemic blasts to granulo-monocytic differentiation (as directly supported by the finding of an enrichment of key transcriptional factors regulating myelopoeisis, such as CEBPα, PU.1, RUNX1, CEBPβ, CEBPε).67 Particularly, analysis at the level of the CEBPα gene showed that IDH1-mutant AML cells have an increased occupancy of the promoter of this gene by H3K4me3, which is associated with expression of CEBPα and of its target genes.67 Furthermore, the gene expression analysis also showed that the IDH1-R132H gene signature is particularly enriched in genes that are responsive to treatment with retinoic acid receptor (RAR) ligands, such as all-trans retinoic acid (ATRA).67 Importantly, in vitro treatment of IDH-mutant AML cells with ATRA resulted in induction of granulocytic differentiation, associated with a reduction in cell viability that occurred through induction of apoptosis.67In vivo ATRA treatment of immunodeficient mice grafted with human IDH-mutant AML cells resulted in a clear reduction of tumor burden.67 Therefore, these observations were of fundamental importance, not only for their implications at the basic research level that improved the overall understanding of the mechanism underlying the perturbation of hematopoietic cell differentiation that is elicited by IDH mutants, but also because they open new perspectives in the treatment of these leukemias.67
The inhibitory effect of mutant IDH enzymes on hematopoietic cell differentiation is also directly supported by the observation that AGI-6780, a potent IDH2-mutant inhibitor induces the granulo-monocytic differentiation of IDH2-mutant primary AML blasts in vitro.66 These observations, to some extent, are reminiscent of the effect of ATRA on acute promyelocytic leukemia cells, demonstrating that the inhibition of mutant IDH2 can relieve a blockade in differentiation that is present in this leukemia subset.68
Other studies have suggested that IDH mutation can act through an inhibition of TET2 effects on DNA methylation. In fact, Figueroa et al showed that IDH1/2 mutations are mutually exclusive from TET2 mutations and inhibited the DNA demethylation activity of TET2; furthermore, IDH-mutant and TET2-mutant AMLs displayed overlapping hypermethylation signatures.61 However, remarkable differences exist between IDH1- and TET2-mutant-induced myeloid leukemias. In contrast to TET2-knockout mice, transgenic mice expressing mutant IDH1 showed reduced numbers of HSCs; this effect could be related to a down-regulation of the DNA damage sensor ATM by alteration of histone methylation, with consequent impaired DNA repair, increased sensitivity to DNA damage and reduced self-renewal of HSCs, independent of TET2.69
Development of animal models has been of fundamental importance to the collective efforts of researchers to define the leukemogenetic role of mutant IDH enzymes. Basically, the retroviral transduction of IDH mutations, in combination with additional oncogenes, into primary bone marrow mouse cells and followed by transplantation has been shown to drive leukemia development.70,71 Other studies have provided an answer to the fundamental question of whether or not IDH1/2-mutants are required for leukemia maintenance in vivo. To answer this question, Kats and colleagues developed a mouse transgenic model of IDH2-R140Q mutation that has the capacity to be both tissue-specific and on/off inducible; using this genetic model, it was demonstrated that expression of the transgene elicited an on/off inducible 2-HG production that was comparable to that observed in AML patients.71 Expression of mutant IDH2 resulted in alterations within the hematopoietic compartment, characterized by expression of HSCs and a partial blockade of hematopoietic cell differentiation.72
Development of compound transgenic models, in which the expression of mutant IDH2 was combined with Meis1 and Hox A9, led to the development of leukemic cells that were dependent on expression/function of mutant IDH for their growth/survival; on the other hand, compound transgenic IDH2-R140Q; Flt3ITD mice showed that mutant IDH cooperates with FLT3ITD in leukemia inhibition in vivo.72 Ogawara and colleagues developed a peculiar model of IDH-dependent leukemia, in which mice were transplanted with NPM1+/− hematopoietic stem/progenitor cells co-transduced with four mutant genes (NPMc, IDH2-R140Q, DNMT3A-R882H, and FLT3ITD).73 The resultant leukemias that developed in these animals were dependent upon the expression of mutant IDH, as supported by the observation that conditional deletion of IDH2-R140Q blocked 2-HG production and maintenance of leukemic stem cells, resulting in survival of the AML mice.73 These observations strongly support the idea of therapeutic targeting of IDH in IDH1/2-mutant AMLs.
Studies carried out in the last few years have provided evidence that the development of a clinically-relevant leukemic disease implies a process of clonal evolution, starting from pre-leukemic clones that contain only some of the genetic alterations observed at the level of leukemic cells (Fig. 3). Importantly, pre-leukemic early genetic alterations would be present in all leukemic cells, whereas mutations present in leukemic subclones would represent mutations acquired at a later time during the leukemic development (Fig. 3).74 Therefore, leukemic therapies aiming to eradicate leukemic cells must target markers/events/genetic abnormalities present in all leukemic cells and, thus, which had developed as early events. The findings from parallel sequencing studies of selected AML patients have provided support for the view that IDH mutations represent an early event during leukemia development.75 It is of interest to note that pre-leukemic stem cells preferentially display mutations in “landscaping” genes that are involved in DNA methylation and chromatin modification, such as IDH1, IDH2, IK2F1, and DNMT3A.76,77
IDH1/2 mutations in T cell lymphomas
In 2012, Cairns and colleagues reported for the first time the frequent occurrence (about 20%) of IDH2 mutations in angioimmunoblastic T cell lymphomas (AITLs) (Table 1).86 In the majority of these patients, the IDH2 mutation represented the R172 subtype, and, much more rarely, the R140 subtype.86 Interestingly, other T cell lymphomas, such as peripheral T cell lymphomas, anaplastic large cell lymphoma, enteropathy type T cell lymphoma, cutaneous T cell lymphoma, hepatosplenic T cell lymphoma and extranodal NK/T-cell lymphoma, showed negativity for IDH mutations.86 Similarly, no IDH mutations were detected in Hodgkin’s lymphoma and non-Hodgkin’s B cell lymphoma.86
The above findings were confirmed in more recent studies on genetic abnormalities of AITLs and the association of IDH2 mutations with other recurrent mutations was clearly defined. Thus, Sakata-Yanagimoto performed a detailed analysis of genetic alterations occurring in AITLs and showed that three genetic mutations are frequent and occur at the level of RHOA, TET2 and DNMT3A, in addition to IDH2, and that IDH2-mutated AITLs were constantly associated with RHOA and TET2 mutations (while there was no association found between IDH2 and DNMT3A mutations).87 Odejide and colleagues basically confirmed these findings showing that, in the majority of AITL patients, IDH2 mutations co-occurred with TET2 mutations.88 Therefore, the co-occurrence of IDH2 and TET2 mutations observed in AITLs sharply contrasts with the mutually exclusive nature of TET2 and IDH1/2 alterations observed in AMLs.
IDH2R172 mutations define a subset of patients with AITL characterized by hypermethylation of genes involved in T cell receptor signaling and T cell differentiation, with consequent down-regulation of genes associated with TH1 differentiation that contributes to lymphomagenesis in this disease.89IDH2R172 mutations have been observed in about 33% of AITL patients, with 68% of those patients reportedly also displaying TET2 mutations and about 40% also displaying DNMT3A or RHOA mutations.89 Interestingly, TET2 mutations are very frequent (about 80%) in AITL, and the group of TET2-mut/IDH2-WT patients did not show the gene expression signature observed in IDH-mutated AITLs.89 Ectopic expression of IDH2R172K in CD4+ T cells was shown to lead to markedly increased levels of 2-HG, histone-3 lysine methylation and 5′-methycytosine, and decreased 5′-hydroxymethylcytosine.89