v
Search
Advanced

Publications > Journals > Latest Articles

Results per page:
v
Original Article Open Access
Yu Liu, Yanan He, Qi Hu, Xin Yang, Hongyan Ma, Haozhou Huang, Ming Yang, Dingkun Zhang
Published online June 30, 2025
Future Integrative Medicine. doi:10.14218/FIM.2025.00018
Abstract
Artemisia argyi H. Lév. & Vaniot essential oil (AAEO) holds significant pharmacological potential, but its application is constrained by hepatotoxicity. This study aimed to [...] Read more.

Artemisia argyi H. Lév. & Vaniot essential oil (AAEO) holds significant pharmacological potential, but its application is constrained by hepatotoxicity. This study aimed to investigate the feasibility of reducing AAEO’s toxicity through storage and to evaluate changes in chemical composition, toxicity, and bioactivity.

Gas chromatography-mass spectrometry was used to analyze compositional changes during storage. Zebrafish acute toxicity tests and the liver-specific transgenic zebrafish model Tg(fabp10:EGFP) were used to assess toxicity. Antimicrobial, analgesic, and antioxidant assays evaluated variations in bioactivity.

Over the 150-day storage period, gas chromatography-mass spectrometry analysis identified 39 components. Zebrafish acute toxicity tests showed that the LD50 of AAEO stored for 0, 30, 60, 90, 120, and 150 days were 0.10 µL·mL−1, 0.10 µL·mL−1, 0.10 µL·mL−1, 0.11 µL·mL−1, 0.13 µL·mL−1, and 0.14 µL·mL−1, respectively, demonstrating a 40% reduction in acute toxicity after 150 days of storage. Using the liver-specific green fluorescent transgenic Tg(fabp10:EGFP) zebrafish model, the inhibition rates of AAEO on hepatic fluorescence intensity were measured at 68.5%, 43.5%, 42.6%, 37.8%, 34.6%, and 31.9% at different time points, confirming reduced hepatotoxicity after storage. Additionally, the antioxidant and analgesic activities of AAEO were significantly enhanced (p < 0.05) after storage, while the antibacterial activity decreased (p < 0.05).

After storage, AAEO significantly reduces hepatotoxicity, with a 40% decrease in acute toxicity after 150 days. Meanwhile, the antioxidant and analgesic activities of AAEO increase, while its antibacterial activity decreases after storage.

Full article
Mini Review Open Access
Sanjib Bhattacharya
Published online June 30, 2025
Future Integrative Medicine. doi:10.14218/FIM.2025.00021
Abstract
Leishmaniasis is a dangerous yet neglected tropical disease affecting a vast population of the world. Several medicinal plants and their constituents (natural products/phytochemicals) [...] Read more.

Leishmaniasis is a dangerous yet neglected tropical disease affecting a vast population of the world. Several medicinal plants and their constituents (natural products/phytochemicals) have been considered of prime importance for the management of leishmaniasis over the years. The present review sheds light on the molecular mechanisms of the constituents obtained from medicinal plants that are pre-clinically effective against leishmaniasis. Various mechanisms by which medicinal plant-derived natural products elicit their action against leishmaniasis are illustrated in the literature. The mechanisms identified include: disruption of cytoplasmic and mitochondrial membranes, induction of apoptosis and autophagy, modulation of gene expression and immunological pathways, pro-oxidant effects (disrupting redox balance) with mitochondrial dysfunction, cell cycle arrest, impaired cellular bioenergetics, i.e., adenosine triphosphate production and coagulation of cellular contents within Leishmania parasites. Future phytochemical and pharmacological (especially clinical) studies are necessary to further understand the mechanistic details of medicinal plant-derived natural compounds and to develop new phytotherapeutic entities from nature against leishmaniasis.

Full article
Original Article Open Access
Honglian Gui, Yingqiu Shen, Lin Tan, Piao Hu, Feng Qian, Xiaoping Wu, Yuanwang Qiu, Sujun Zheng, Jiaojian Lv, Yunzhen Shi, Jun Li, Yongfang Jiang, Zhizhen Hu, Fanru Nie, Yan Huo, Lihong Qu, Qing Xie
Published online June 30, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00162
Abstract
Chronic hepatitis B virus (HBV)-infected patients may exhibit liver fibrosis and other pathological changes despite normal alanine aminotransferase (ALT). This study aimed to assess [...] Read more.

Chronic hepatitis B virus (HBV)-infected patients may exhibit liver fibrosis and other pathological changes despite normal alanine aminotransferase (ALT). This study aimed to assess the efficacy and safety of tenofovir amibufenamide (TMF) in chronic HBV-infected patients with normal ALT levels.

The ongoing PROMOTE study (NCT05797714) is the first prospective, multicenter, randomized, open-label, blank-controlled clinical trial involving chronic HBV-infected patients with normal ALT levels. Participants were randomized in a 1:1 ratio to receive either TMF (TMF group) or no treatment (blank control group). The primary efficacy endpoint was the proportion of participants achieving HBV DNA levels <20 IU/mL at 48 weeks.

A total of 197 participants were enrolled, with 95 in the TMF group and 102 in the blank control group. At 48 weeks, a significantly greater proportion of participants in the TMF group achieved HBV DNA levels <20 IU/mL compared with the control group (74.2% vs. 9.0%, P < 0.001). The TMF group demonstrated more pronounced reductions in HBV DNA (−2.63 vs. −0.22 log10 IU/mL, P < 0.001), HBsAg (−0.07 vs. −0.04 log10 IU/mL, P = 0.02), and ALT levels (−14.09% vs. 0%, P = 0.003) compared with the blank control. In the TMF group, the proportion of participants with high-normal ALT levels (20–40 IU/L) was reduced. No significant differences were observed between the groups in creatinine, glomerular filtration rate, bone turnover biomarkers, lipid profiles, or phosphorus levels.

TMF treatment demonstrates significant efficacy in chronic HBV-infected patients with normal ALT levels and shows a favorable safety profile regarding bone, renal, and lipid parameters. The PROMOTE study is ongoing, and further results at 96 and 144 weeks are expected to provide additional insights.

Full article
Letter to the Editor Open Access
Review Article Open Access
Bograya Maria, Voronova Sophia, Lopatin Mikhail, Vulf Maria, Natalia Todosenko, Litvinova Larisa
Published online June 30, 2025
Gene Expression. doi:10.14218/GE.2025.00039
Abstract
Metabolic syndrome (MetS) is associated with a plethora of different comorbidities. Exploring its key molecular mechanisms, such as advanced glycation end product and its receptor [...] Read more.

Metabolic syndrome (MetS) is associated with a plethora of different comorbidities. Exploring its key molecular mechanisms, such as advanced glycation end product and its receptor (AGE/RAGE) pathway, holds great potential. Numerous sources agree that targeting the AGE/RAGE pathway is a potential therapeutic strategy for MetS. However, the regulation of AGE/RAGE by microRNAs (miRNAs) in the context of MetS is still poorly understood. This review aimed to provide a systematic picture of the influence of miRNAs on AGE/RAGE in the context of MetS, with a particular focus on its ligands and receptors. This review achieves this in two ways: through an inductive “bottom-up” approach realized by a classical descriptive literature search, and through a deductive/synthetic “top-down” approach based on carefully selected miRNA profiling studies in MetS and its comorbidities. Although the initial inductive approach allowed the identification of some miRNAs of interest, almost all articles on this topic focus on the regulation of processes exclusively involved in atherogenesis. The new deductive approach has broadened the research horizon: It has enabled the discovery of new promising miRNAs and allowed for ranking different comorbid pathologies in MetS according to the degree of miRNA dysregulation of AGE/RAGE. Thus, in addition to atherosclerosis, significant miRNA dysregulation of AGE/RAGE was also described in MetS, particularly in immune cells, as well as in subcutaneous adipose tissue in obesity. This review, along with the novel approaches to systematizing the data contained therein may contribute to the understanding of MetS pathogenesis and the search for targets for the treatment of MetS.

Full article
Case Report Open Access
Xing Huang, Yike Cai, Hong Lin
Published online June 30, 2025
Neurosurgical Subspecialties. doi:10.14218/NSSS.2025.00002
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a rare and highly aggressive embryonal tumor that predominantly affects infants and young children. This malignancy arises from primitive [...] Read more.

Atypical teratoid/rhabdoid tumor (AT/RT) is a rare and highly aggressive embryonal tumor that predominantly affects infants and young children. This malignancy arises from primitive neuroectodermal cells and exhibits heterogeneous differentiation into various embryonic tissues. Due to its rarity and complexity, diagnosing and managing AT/RT present significant challenges. Recent studies have summarized the key features of cerebellar and supratentorial AT/RT cases; however, critical gaps remain in understanding their diffuse leptomeningeal variants and long-term functional outcomes. Here, we report a case of a two-year-old child diagnosed with cerebellar AT/RT, who presented with vomiting and gait instability. The patient underwent a gross total resection followed by adjuvant radiotherapy and chemotherapy. Despite achieving radiological remission, the patient survived for only eight months and experienced severe neurological deficits, including persistent ataxia and recurrent infections. This case highlights the disconnect between surgical success and long-term quality of life. It underscores the importance of integrating molecular diagnostics and palliative care to address the multifaceted burden of AT/RT.

Full article
Original Article Open Access
Simiao Yu, Sici Wang, Ping Li, Haocheng Zheng, Jing Jing, Tingting He, Xia Ding, Ruilin Wang
Published online June 30, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00073
Abstract
Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, [...] Read more.

Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, and the lack of specific diagnostic and prognostic biomarkers poses significant challenges to the clinical diagnosis and treatment of this condition. Consequently, our study aimed to endeavor to identify serum and fecal metabolic biomarkers, enabling more accurate DILI diagnosis and improved prediction of chronic progression.

Untargeted metabolomics analysis was performed on serum and fecal samples obtained from a cohort of 32 DILI patients (causality confirmed via the updated Roussel Uclaf Causality Assessment Method) and 36 healthy controls. Utilizing techniques such as partial least squares-discriminant analysis modeling and t-tests, we identified significantly differentially expressed metabolites and metabolite sets. Causality assessment was performed using the updated Roussel Uclaf Causality Assessment Method.

The findings from the analysis of serum and fecal metabolomics association pathways suggested that perturbations in bile acid metabolism might serve as potential mechanisms underlying the progression of DILI. Our study revealed 22 overlapping differential metabolites between serum and feces, displaying significant concentration differences between the DILI and healthy control groups. Notably, we identified chenodeoxycholic acid and deoxycholic acid as promising markers that not only distinguished DILI patients from healthy individuals but also exhibited predictive potential for DILI chronicity.

The integrated analysis of serum and fecal metabolites uncovers the significant disruption of bile acid metabolites as a key contributing factor in the pathogenesis of DILI. Our study offers promising potential biomarkers for the diagnosis and prognosis of DILI, paving the way for a novel perspective in the realm of DILI diagnosis and treatment.

Full article
Review Article Open Access
Weixin Chen, Yuan Xu, Hongsheng Liu
Published online June 30, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2025.00005
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with marked phenotypic differences observed among its major histological subtypes, adenocarcinoma (ADC), [...] Read more.

Lung cancer remains the leading cause of cancer-related mortality worldwide, with marked phenotypic differences observed among its major histological subtypes, adenocarcinoma (ADC), squamous cell carcinoma (SCC), and small cell lung cancer (SCLC), in both clinical presentation and therapeutic response. In recent years, metabolomics has emerged as a powerful tool for studying cancer metabolic reprogramming, providing new insights into the metabolic distinctions among lung cancer subtypes. This review summarizes recent research advances in the metabolomics of ADC, SCC, and SCLC. Studies have revealed that ADC and SCC display distinct metabolic profiles in lipid metabolism, amino acid metabolism, and cell membrane synthesis, while SCLC demonstrates a unique metabolic pattern. Through metabolomic technologies, particularly mass spectrometry and liquid chromatography, it is possible to effectively differentiate lung cancer subtypes and identify potential biomarkers for early diagnosis and personalized treatment. This review also explores the clinical potential of metabolomics in lung cancer, emphasizing its critical role in early diagnosis and subtype stratification. These methodological advances establish a robust foundation for precision oncology paradigms in thoracic malignancies.

Full article
Mini Review Open Access
Jieyun Yin
Published online June 30, 2025
Journal of Translational Gastroenterology. doi:10.14218/JTG.2025.00024
Abstract
Imbalanced autonomic function has been reported in gastrointestinal (GI) disorders. The vagus nerve is a major component in the regulation of upper GI motility. Vagal nerve stimulation [...] Read more.

Imbalanced autonomic function has been reported in gastrointestinal (GI) disorders. The vagus nerve is a major component in the regulation of upper GI motility. Vagal nerve stimulation (VNS) has been shown to improve symptoms of various GI disorders by enhancing parasympathetic activity. This review aims to summarize the clinical efficacy of transcutaneous VNS for GI disorders, focusing on abdominal pain, other GI symptoms, and GI motility, and to discuss the mechanisms of action of transcutaneous VNS. Randomized clinical trials investigating transcutaneous VNS in several major GI disorders, including functional dyspepsia, gastroparesis, constipation, irritable bowel syndrome, and inflammatory bowel disease, were reviewed and discussed. The forms of transcutaneous VNS covered in this review include transcutaneous auricular VNS, transcutaneous cervical VNS, and percutaneous electrical nerve field stimulation. Transcutaneous VNS has been shown to relieve abdominal pain, improve GI symptoms, and accelerate GI motility by enhancing vagal activity in patients with various GI disorders. Transcutaneous VNS is an innovative, effective, and safe therapy for patients with GI disorders; however, large-scale clinical trials are necessary to establish optimal treatment modalities and efficacy.

Full article
Original Article Open Access
Jinmiao Meng, Ruofei Du, Panting Li, Jun Lyu
Published online June 30, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2025.00010
Abstract
Skin cancer, the most common global malignancy, is linked to ultraviolet (UV)-driven serum 25-hydroxyvitamin D (25(OH)D)synthesis, with its controversial role possibly reflecting [...] Read more.

Skin cancer, the most common global malignancy, is linked to ultraviolet (UV)-driven serum 25-hydroxyvitamin D (25(OH)D)synthesis, with its controversial role possibly reflecting cumulative UV exposure. This study aimed to assess the association and causality between 25(OH)D levels and skin cancer risk using the National Health and Nutrition Examination Survey (1999–2018) data and Mendelian randomization (MR) analyses, evaluating 25(OH)D as a screening biomarker.

We integrated data from the National Health and Nutrition Examination Survey (1999–2018; n = 21,357 U.S. adults, including 631 skin cancer cases) with MR analyses using genome-wide association study-derived genetic variants to assess the causal relationship between serum 25(OH)D levels and skin cancer risk.

Higher 25(OH)D levels were associated with increased risks of nonmelanoma skin cancer [odds ratio (OR) (95% confidence interval (CI)) = 2.94 (2.10, 4.20)], melanoma [OR (95% CI) = 2.94 (1.73, 5.28)], and other skin cancers [OR (95% CI) = 2.10 (1.36, 3.36)]. MR analyses supported a causal relationship for nonmelanoma skin cancer [OR (95% CI) = 1.01 (1.00, 1.02)] and melanoma [OR (95% CI) = 1.00 (1.00, 1.01)]. Risks were highest in males, older adults, and individuals with obesity.

Higher serum 25(OH)D levels are associated with increased skin cancer risk, likely reflecting cumulative UV exposure. Routine monitoring of 25(OH)D, combined with UV exposure management, is recommended for risk stratification in skin cancer screening, particularly among high-risk groups. Validation in multiethnic cohorts is needed to confirm these findings.

Full article
PrevPage 7 of 10 12678910Next
Back to Top