v
Search
Advanced

Publications > Journals > Most Viewed Articles

Results per page:
v
Original Article Open Access
Shikha Kalotra, Gurcharan Kaur
Published online March 25, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4312
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2024.00038
Abstract
Despite significant advances in Parkinson’s disease (PD) treatment, it remains incurable, with limited therapeutic options. Currently, repurposing already tested, safe drugs has [...] Read more.

Despite significant advances in Parkinson’s disease (PD) treatment, it remains incurable, with limited therapeutic options. Currently, repurposing already tested, safe drugs has emerged as an effective therapeutic strategy against various neurodegenerative diseases, including PD. Using a drug-repurposing approach, the current study investigated the neuroregenerative potential of polysialic acid mimicking compounds, 5-nonyloxytryptamine oxalate (5-NOT) and Epirubicin (Epi), an anti-cancer drug, in 1-methyl-4-phenylpyridinium (MPP+)-treated human neuroblastoma SH-SY5Y cells as a PD model.

The excitotoxic model was established by exposing SH-SY5Y cells to 500 µM of MPP+ and subsequently treating them with the test compounds. The effect of MPP+-induced toxicity on cellular and nuclear morphology, as well as on the expression of neuroplasticity and cell survival proteins, were studied by immunostaining, gelatin zymogram, and Western blot assays.

Treatment with 5-NOT and Epi significantly promoted the survival of MPP+-challenged SH-SY5Y cells and prevented changes in their cellular and nuclear morphology by regulating the expression of microtubule-associated protein (MAP-2) and polysialylated-neural cell adhesion molecule (PSA-NCAM) and NCAM synaptic plasticity proteins. Further, 5-NOT and Epi treatment also protected SH-SY5Y cells by restoring levels of nitric oxide, matrix metalloproteinase, and stress response proteins. Interstingly, 5-NOT attenuated MPP+-induced toxicity in SH-SY5Y cells by regulating the intrinsic protein kinase AKT/BAD apoptotic pathway and the P-38 MAP kinase synaptic plasticity pathway.

These preliminary findings suggest that 5-NOT, as a potential polysialic acid glycomimetic, may serve as a promising drug candidate for targeting neurodegeneration of dopaminergic neurons, a hallmark feature of PD.

Full article
Review Article Open Access
Hananeh Rozbahani, Alireza Zangooie, Seyed Mohsen Mirabdolhosseini, Nayeralsadat Fatemi, Mohsen Norouzinia, Amir Sadeghi, Zahra Salehi, Ehsan Nazemalhosseini-Mojarad
Published online August 28, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4306
Gene Expression. doi:10.14218/GE.2025.00042
Abstract
Targeted drug delivery remains a major challenge in cancer therapy, often limiting both efficacy and safety. Although microRNA sponges and short-hairpin RNAs show potential for [...] Read more.

Targeted drug delivery remains a major challenge in cancer therapy, often limiting both efficacy and safety. Although microRNA sponges and short-hairpin RNAs show potential for gene-based cancer treatment, their clinical use is restricted by delivery inefficiency, off-target effects, cytotoxicity, and instability. Viral vectors offer high efficiency but are associated with issues such as immune responses, insertional mutagenesis, and limited cargo capacity. Non-viral carriers are safer and more affordable but suffer from poor transfection efficiency, instability, and inadequate endosomal escape. These limitations hinder the clinical application of RNA therapeutics. The Vir-inspired Biotechnical Vector (VIBV) is a novel hybrid platform that combines viral and non-viral elements with nanotechnology to enable personalized, tumor-specific gene therapy. Engineered with a spindle-shaped nanocore and a polyethylene glycolylated liposomal shell, VIBV ensures immune evasion, prolonged circulation, and controlled therapeutic release triggered by tumor microenvironmental cues such as acidity, hypoxia, and elevated glutathione levels. It delivers oncogenic microRNA sponges, short-hairpin RNAs, tumor-specific antigens, and cyclin-targeting RNAs to enhance gene silencing, immune activation, and tumor suppression. This review examines the limitations of current delivery systems and presents VIBV as a promising next-generation strategy with improved biocompatibility, targeting precision, and potential for cost-effective, personalized cancer therapy, while also addressing its remaining challenges and prospects.

Full article
Mini Review Open Access
Sanjib Bhattacharya
Published online June 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4298
Future Integrative Medicine. doi:10.14218/FIM.2025.00021
Abstract
Leishmaniasis is a dangerous yet neglected tropical disease affecting a vast population of the world. Several medicinal plants and their constituents (natural products/phytochemicals) [...] Read more.

Leishmaniasis is a dangerous yet neglected tropical disease affecting a vast population of the world. Several medicinal plants and their constituents (natural products/phytochemicals) have been considered of prime importance for the management of leishmaniasis over the years. The present review sheds light on the molecular mechanisms of the constituents obtained from medicinal plants that are pre-clinically effective against leishmaniasis. Various mechanisms by which medicinal plant-derived natural products elicit their action against leishmaniasis are illustrated in the literature. The mechanisms identified include: disruption of cytoplasmic and mitochondrial membranes, induction of apoptosis and autophagy, modulation of gene expression and immunological pathways, pro-oxidant effects (disrupting redox balance) with mitochondrial dysfunction, cell cycle arrest, impaired cellular bioenergetics, i.e., adenosine triphosphate production and coagulation of cellular contents within Leishmania parasites. Future phytochemical and pharmacological (especially clinical) studies are necessary to further understand the mechanistic details of medicinal plant-derived natural compounds and to develop new phytotherapeutic entities from nature against leishmaniasis.

Full article
Review Article Open Access
Jian-Li Wang, Yue Xiao, Ming-Long Li, Guo-Li Chen, Miao-Hang Cui, Jin-Long Liu
Published online September 5, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4201
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00204
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) poses a significant challenge in modern medicine due to its high prevalence. The pathogenesis of MAFLD involves a complex [...] Read more.

Metabolic dysfunction-associated fatty liver disease (MAFLD) poses a significant challenge in modern medicine due to its high prevalence. The pathogenesis of MAFLD involves a complex dysmetabolic process consistent with the “multiple-hit” hypothesis. This process includes excessive triglyceride (TC) accumulation within hepatocytes, lipotoxicity, insulin resistance (IR), chronic low-grade inflammation, and increased oxidative stress. The role of leptin in the liver has been extensively studied, demonstrating both direct effects on hepatic cells and indirect actions mediated through the central nervous system (CNS). In MAFLD, leptin modulates several physiological processes: it improves glucose metabolism by enhancing insulin sensitivity and lowering glucose levels; regulates lipid metabolism by promoting β-oxidation and TC export while inhibiting lipogenesis; and contributes to fibrogenesis by upregulating transforming growth factor-β (TGF-β) expression and activating hepatic stellate cells (HSCs) and the immune response. This review explores the structure of leptin, its primary physiological functions, its potential role in MAFLD pathogenesis, and its promise as a novel therapeutic target.

Full article
Review Article Open Access
Maria Bograya, Sophia Voronova, Mikhail Lopatin, Maria Vulf, Natalia Todosenko, Larisa Litvinova
Published online June 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4171
Gene Expression. doi:10.14218/GE.2025.00039
Abstract
Metabolic syndrome (MetS) is associated with a plethora of different comorbidities. Exploring its key molecular mechanisms, such as advanced glycation end product and its receptor [...] Read more.

Metabolic syndrome (MetS) is associated with a plethora of different comorbidities. Exploring its key molecular mechanisms, such as advanced glycation end product and its receptor (AGE/RAGE) pathway, holds great potential. Numerous sources agree that targeting the AGE/RAGE pathway is a potential therapeutic strategy for MetS. However, the regulation of AGE/RAGE by microRNAs (miRNAs) in the context of MetS is still poorly understood. This review aimed to provide a systematic picture of the influence of miRNAs on AGE/RAGE in the context of MetS, with a particular focus on its ligands and receptors. This review achieves this in two ways: through an inductive “bottom-up” approach realized by a classical descriptive literature search, and through a deductive/synthetic “top-down” approach based on carefully selected miRNA profiling studies in MetS and its comorbidities. Although the initial inductive approach allowed the identification of some miRNAs of interest, almost all articles on this topic focus on the regulation of processes exclusively involved in atherogenesis. The new deductive approach has broadened the research horizon: It has enabled the discovery of new promising miRNAs and allowed for ranking different comorbid pathologies in MetS according to the degree of miRNA dysregulation of AGE/RAGE. Thus, in addition to atherosclerosis, significant miRNA dysregulation of AGE/RAGE was also described in MetS, particularly in immune cells, as well as in subcutaneous adipose tissue in obesity. This review, along with the novel approaches to systematizing the data contained therein may contribute to the understanding of MetS pathogenesis and the search for targets for the treatment of MetS.

Full article
Original Article Open Access
Simiao Yu, Sici Wang, Ping Li, Haocheng Zheng, Jing Jing, Tingting He, Xia Ding, Ruilin Wang
Published online June 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4137
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00073
Abstract
Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, [...] Read more.

Drug-induced liver injury (DILI) represents a prevalent adverse event associated with medication use. However, the exact mechanisms underlying DILI remain incompletely understood, and the lack of specific diagnostic and prognostic biomarkers poses significant challenges to the clinical diagnosis and treatment of this condition. Consequently, our study aimed to endeavor to identify serum and fecal metabolic biomarkers, enabling more accurate DILI diagnosis and improved prediction of chronic progression.

Untargeted metabolomics analysis was performed on serum and fecal samples obtained from a cohort of 32 DILI patients (causality confirmed via the updated Roussel Uclaf Causality Assessment Method) and 36 healthy controls. Utilizing techniques such as partial least squares-discriminant analysis modeling and t-tests, we identified significantly differentially expressed metabolites and metabolite sets. Causality assessment was performed using the updated Roussel Uclaf Causality Assessment Method.

The findings from the analysis of serum and fecal metabolomics association pathways suggested that perturbations in bile acid metabolism might serve as potential mechanisms underlying the progression of DILI. Our study revealed 22 overlapping differential metabolites between serum and feces, displaying significant concentration differences between the DILI and healthy control groups. Notably, we identified chenodeoxycholic acid and deoxycholic acid as promising markers that not only distinguished DILI patients from healthy individuals but also exhibited predictive potential for DILI chronicity.

The integrated analysis of serum and fecal metabolites uncovers the significant disruption of bile acid metabolites as a key contributing factor in the pathogenesis of DILI. Our study offers promising potential biomarkers for the diagnosis and prognosis of DILI, paving the way for a novel perspective in the realm of DILI diagnosis and treatment.

Full article
Original Article Open Access
David Izon, Olivia Wawryk, Damien McCarthy, Jennifer Soon, Sally Philip, Chris Kearney, Zhiheng Xu, Jianrong Zhang
Published online March 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4119
Oncology Advances. doi:10.14218/OnA.2025.00006
Abstract
Emergency department (ED) presentations are associated with higher cancer mortality. This study aimed to investigate the prevalence, frequency, and risk factors in Australian patients [...] Read more.

Emergency department (ED) presentations are associated with higher cancer mortality. This study aimed to investigate the prevalence, frequency, and risk factors in Australian patients diagnosed with malignant skin cancers.

This data-linkage cohort study examined adult patients presenting to the ED at the Royal Melbourne and Western Health hospitals within 12 months of a malignant skin cancer diagnosis. Multivariable logistic and Poisson regressions were used to analyze factors influencing the prevalence and frequency of ED presentations.

A total of 3,873 patients were diagnosed with skin malignancies between 2010 and 2018, of which 631 were diagnosed with melanoma. The prevalence of ED presentation was 29%, representing 2,119 episodes of care (median: 0; range: 0–14). Risk factors for a higher prevalence and frequency included: age ≥75 years (odds ratio (OR) = 1.78 [95% confidence interval 1.47–2.15]; incidence risk ratio (IRR) = 1.52 [1.35–1.70]); male (OR = 1.17 [1.01–1.36]; IRR = 1.23 [1.12–1.35]); socioeconomic status levels of 0–30% (OR = 1.59 [1.24–2.03]; IRR = 1.69 [1.45–1.96]) and 71–100% (OR = 1.30 [1.07–1.58]; IRR = 1.27 [1.12–1.45]); preferred language other than English (OR = 1.47 [1.17–1.84]; IRR = 1.49 [1.32–1.69]); and experience with any systemic therapy or radiotherapy (OR = 3.77 [2.12–6.71]; IRR = 2.36 [1.82–3.05]). Age < 65 years was protective (OR = 0.72 [0.59–0.89]; IRR = 0.78 [0.68–0.90]). Other preferred languages and cancer treatment experience were also risk factors in the sub-cohort with melanoma.

This study reports the prevalence and frequency of ED presentations following a skin cancer diagnosis and their association with socioeconomic and linguistic factors in Australia. Increased awareness of these factors could help address health inequities and potentially reduce the need for ED presentations.

Full article
Review Article Open Access
Xin Zhang, Rong Wang, Bin Niu, Liaoyun Zhang
Published online October 28, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4073
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00377
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer and continues to be a major cause of cancer-related mortality, particularly in regions of China [...] Read more.

Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer and continues to be a major cause of cancer-related mortality, particularly in regions of China with a high hepatitis B virus prevalence. Early-stage diagnosis remains challenging due to its asymptomatic onset and the limited sensitivity of conventional biomarkers, which together contribute to delayed detection, suboptimal therapeutic outcomes, and poor prognosis. These limitations underscore the urgent need for reliable, sensitive, and specific biomarkers to enable timely detection and targeted intervention. Protein induced by vitamin K absence or antagonist-II, an abnormal prothrombin variant generated under vitamin K deficiency or antagonism, has emerged as a promising candidate with diagnostic and therapeutic relevance in HCC. This review critically examines the molecular and biological characteristics of protein induced by vitamin K absence or antagonist-II, evaluates its clinical utility in HCC diagnosis and management, and delineates the current limitations hindering its broader application. Furthermore, future perspectives are proposed to guide translational research and clinical implementation. Collectively, this review aims to provide a comprehensive theoretical framework to advance precision diagnosis and individualized treatment strategies for HCC.

Full article
Review Article Open Access
Manar Hamed Almehyawi, Diyala Mohammed Basyoni, Rima Basil Alsibaie, Khadijah Hashim Alhussini, Renad Mohammed Lashkar, Rama Krishna Alla, Mohammed Shammas, Ghaida Meshari Alotaibi
Published online June 25, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 4063
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00016
Abstract
Infection control is essential for the success of prosthodontic and oral implant procedures, as microbial contamination can lead to serious complications such as denture stomatitis [...] Read more.

Infection control is essential for the success of prosthodontic and oral implant procedures, as microbial contamination can lead to serious complications such as denture stomatitis and peri-implantitis. While synthetic disinfectants like chlorhexidine are commonly used, they may cause side effects including irritation, toxicity, and the development of microbial resistance over time. Natural products derived from plants, animals, and minerals are currently being explored as safer alternatives. Compounds such as epigallocatechin gallate from green tea; eugenol from clove oil; quercetin, thymol, cinnamaldehyde, and flavonoids from propolis; and terpinen-4-ol from tea tree oil have shown strong antimicrobial and anti-biofilm properties. These natural agents are not only effective against harmful oral bacteria but also promote healing, are more biocompatible, environmentally friendly, and are often preferred by patients. However, challenges remain regarding their routine clinical use. The strength and composition of natural agents can vary, and there is a lack of consistent product standards, clinical trials, and comprehensive safety data. Currently, these products are not approved by the U.S. Food and Drug Administration for dental use and are only available as over-the-counter remedies. Production costs and scalability must also be evaluated in comparison with synthetic alternatives. Emerging technologies, such as nanocarriers and targeted delivery systems, are being developed to enhance the effectiveness of natural agents in dental applications. Further clinical research and the establishment of clear regulatory guidelines are necessary to support their integration into clinical practice. Natural disinfectants hold significant potential to become valuable, safe, and sustainable tools for maintaining hygiene in prosthodontics and oral implantology.

Full article
Editorial Open Access
Fernando Schmitt
Published online June 24, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3976
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2025.00015
PrevPage 17 of 34 121617183334Next
Back to Top