v
Search
Advanced

Publications > Journals > Most Viewed Articles

Results per page:
v
Research Letter Open Access
Jianhua Hu, Xiaoli Zhang, Zhibo Zhou, Fangfang Geng, Hongyu Jia, Linfeng Jin, Weixiang Zhong, Guodong Yu, Xue Wen, Hainv Gao, Yida Yang
Published online July 7, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 6045
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00175
Review Article Open Access
Ali Moradi, Mohammad Bayat, Parvin Pourmasoumi, Sufan Chien
Published online March 19, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 6023
Cancer Screening and Prevention. doi:10.14218/CSP.2025.00001
Abstract
Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, characterized by high mortality rates and limited treatment options. MicroRNAs (miRNAs) are critical [...] Read more.

Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, characterized by high mortality rates and limited treatment options. MicroRNAs (miRNAs) are critical regulators of gene expression and play significant roles in the development of LC. This review aimed to provide a comprehensive analysis of oncogenic miRNAs involved in LC, focusing on their dysregulation, functional roles, and potential implications for diagnosis and therapy. In this review, we collected data from published literature, specifically selecting English articles closely related to the topic. We conducted a thorough review of studies published between 2013 and 2023, utilizing prominent academic databases such as PubMed, Scopus, and Google Scholar to gather relevant data. Our investigation highlights several oncogenic miRNAs that have been shown to play critical roles in lung cancer biology, including miR-9-5p, miR-21, and miR-31. These miRNAs are known to facilitate various key processes, such as tumor cell proliferation, enhanced migratory capabilities, and the development of resistance to chemotherapeutic agents. Additionally, miRNAs present significant diagnostic and therapeutic potential. In conclusion, the unique roles and regulatory networks of miRNAs in LC warrant extensive further research. Further research is essential to uncover the complex networks of miRNAs and to develop innovative miRNA-based therapies for lung cancer.

Full article
Illuminating and Instructive Clinical Case Open Access
Monica Dahiya, Teresa Tai, Trana Hussaini, Gordon Ritchie, Nancy Matic, Eric M. Yoshida, Christopher F. Lowe
Published online December 12, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5958
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00248
Abstract
Few cases of tenofovir resistance have been reported, and the appropriate treatment for such cases remains unclear. We aimed to share a case of a chronic hepatitis B mono-infected [...] Read more.

Few cases of tenofovir resistance have been reported, and the appropriate treatment for such cases remains unclear. We aimed to share a case of a chronic hepatitis B mono-infected patient with potential tenofovir resistance who required combined lamivudine and tenofovir therapy to achieve adequate viral suppression. The patient’s viral load (plasma) was monitored using the cobas® hepatitis B virus Test on the cobas® 6800 system. Hepatitis B antiviral drug resistance (AVDR) mutations were assessed by amplicon-based sequencing. Plasma was extracted using the MagNa Pure 24 system, and polymerase chain reaction targeting the polymerase gene (860bp) was performed. Sequencing was conducted on GridION R10.4.1 flow cells, and the resulting FASTQ files were analyzed using DeepChek®-HBV Software. We describe a female patient in her 60s with chronic hepatitis B who was e-antigen positive. She met treatment criteria in May 2020, when her alanine transaminase levels were 1.5 times above the upper limit of normal. She was initially started on entecavir but had to switch to tenofovir alafenamide in June 2020 due to a rash. Despite three years of tenofovir therapy, her viral load remained unsuppressed. AVDR testing identified two suspected tenofovir resistance mutations (V191I and A317S). Since no mutations associated with lamivudine resistance were detected, the patient was treated with a combination of lamivudine and tenofovir, achieving viral suppression after four months. Although rare, tenofovir resistance should be considered in patients with persistent viremia despite long-term therapy. AVDR sequencing facilitated the detection of potential tenofovir resistance and guided treatment decisions, leading to successful viral suppression in this case.

Full article
Review Article Open Access
Swarup K. Chakrabarti, Dhrubajyoti Chattopadhyay
Published online April 17, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5950
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2024.00045
Abstract
This review explores the complex interplay between the microbiome and human aging, highlighting how dysbiosis impacts host physiology and health, particularly in relation to genomic [...] Read more.

This review explores the complex interplay between the microbiome and human aging, highlighting how dysbiosis impacts host physiology and health, particularly in relation to genomic stability and telomere attrition. Recent advances in cellular and molecular biology have underscored the role of both intrinsic and extrinsic factors in human aging, with the microbiome emerging as a key determinant of host physiology and health. Dysbiosis—disruptions in microbiome composition—is linked to various age-related diseases and impacts genomic stability and telomere attrition, the progressive shortening of telomeres that limits cell division and contributes to aging. This review examines how microbiome dynamics influence aging by triggering inflammation, oxidative stress, immune dysregulation, and metabolic dysfunction, all of which affect two primary hallmarks of aging: genomic instability and telomere attrition. Understanding these interactions is essential for developing targeted interventions to restore microbiome balance and promote healthy aging, offering potential treatments to extend healthspan and alleviate aging-related diseases. The convergence of microbiome and aging research promises transformative insights and new avenues for improving global population well-being.

Full article
Case Report Open Access
Yanping Wang, Xiuxu Chen, Alessa P. Aragao, Xianzhong Ding
Published online June 11, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5867
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2025.00010
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease with unclear etiology. Various vaccines have been reported as triggers of AIH. Recently, with the ongoing COVID-19 pandemic [...] Read more.

Autoimmune hepatitis (AIH) is a chronic inflammatory disease with unclear etiology. Various vaccines have been reported as triggers of AIH. Recently, with the ongoing COVID-19 pandemic and widespread vaccination worldwide, several cases of COVID-19 vaccination-associated (CA) AIH, occurring with or without COVID-19 infection, have been reported.

In this report, we describe a 66-year-old female who developed biopsy-proven acute-onset autoimmune hepatitis after receiving four doses of the COVID-19 vaccine and experiencing one COVID-19 infection in 2022. The patient was immediately treated with prednisone. Her liver enzymes gradually decreased to the normal range after treatment. In addition, we reviewed 20 cases of CA-AIH reported from multiple countries. The summarized data showed that CA-AIH and classical AIH share some clinical, serological, and histopathological features, such as female predominance and a middle-aged distribution. All patients had some positive circulating autoantibodies, including anti-nuclear antibody and/or positive anti-smooth muscle antibody. Histologically, CA-AIH showed a more acute onset compared to classical AIH, which typically presents with more chronic hepatitis.

This case report provides additional evidence supporting an association between COVID-19 vaccination and/or infection and AIH, suggesting more causality than coincidence.

Full article
Original Article Open Access
Xiangshu Jin, Huijun Dong, Juan Wang, Guomin Ou, Xinyuan Lai, Xing Tian, Lei Wang, Hui Zhuang, Tong Li, Kuanhui Xiang
Published online November 25, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5819
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00259
Abstract
Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain [...] Read more.

Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.

Sphere formation assay and real-time Polymerase Chain Reaction quantification were used to isolate and confirm liver cancer stem cells. The inhibitory concentration values of sorafenib and regorafenib were calculated and compared using the Cell Counting Kit-8 assay. HBV infection was used to assess the effect of HBV replication on LCSC markers. Co-immunoprecipitation assay was performed to detect the interaction between CD133 and SRC. Furthermore, we utilized the CRISPR-Cas9 system to knockout CD133 expression in HepG2.2.15 cells.

LCSCs derived from HCCs exhibited high expression of stem cell markers and demonstrated reduced sensitivity to sorafenib and regorafenib. HBV replication promoted both drug resistance and stemness in hepatoma cells and clinical samples. Overexpression of HBx protein in HepG2 cells upregulated the expression of CD133, EpCAM, and CD24, enhancing resistance to sorafenib and regorafenib. Knockout of CD133 expression using the CRISPR-Cas9 system significantly inhibited drug resistance to both sorafenib and regorafenib in HepG2.2.15 cells. Mechanistically, HBV replication promoted CD133 expression, which in turn interacted with the SRC/STAT3 signaling pathway.

Our data suggest that HBV replication enhances the stemness and drug resistance of HCC, providing a strong theoretical foundation for the development of targeted and efficient treatments for HBV-infected HCCs.

Full article
Review Article Open Access
Huizhen Huang, Feng Chen
Published online April 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5777
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00410
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most prevalent primary liver cancer, characterized by insidious onset and high malignancy. Many patients are diagnosed at an [...] Read more.

Intrahepatic cholangiocarcinoma (iCCA) is the second most prevalent primary liver cancer, characterized by insidious onset and high malignancy. Many patients are diagnosed at an inoperable stage, and the effectiveness of chemotherapy and radiotherapy remains limited. This study aimed to provide a comprehensive review of the histological classification, genetic alterations, molecular subtypes, and corresponding imaging signatures of iCCA, highlighting its heterogeneity and offering insights into targeted therapy and personalized treatment. The heterogeneity of iCCA poses significant challenges to both targeted therapy and immunotherapy, necessitating in-depth exploration at the molecular and subtyping levels. Investigating genetic variations, signaling pathway alterations, and molecular subtypes can aid in patient stratification. Stratifying iCCA patients allows for more precise treatment selection, ultimately improving survival outcomes. Imaging, as a non-invasive tool, holds substantial potential for predicting subtypes and molecular profiles. It is possible to infer histological and molecular features from imaging, or to interpret imaging signatures in light of known histological and molecular data. This integrative approach, combining external imaging with internal molecular insights, fosters a comprehensive understanding of iCCA’s characteristics and enhances clinical management.

Full article
Review Article Open Access
Yike Tian, Haibo Yu, Juan Chen
Published online July 22, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5722
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00064
Abstract
Chronic hepatitis B virus (HBV) infection remains a major cause of liver diseases, including cirrhosis and hepatocellular carcinoma. Reliable biomarkers for assessing viral replication, [...] Read more.

Chronic hepatitis B virus (HBV) infection remains a major cause of liver diseases, including cirrhosis and hepatocellular carcinoma. Reliable biomarkers for assessing viral replication, liver damage, and predicting clinical outcomes are essential for effective patient management. This review focuses on two promising biomarkers: serum HBV RNA and hepatitis B core-related antigen, both of which show strong correlations with viral replication and disease progression. Serum HBV RNA levels reflect the quantity and transcriptional activity of intrahepatic covalently closed circular DNA, providing insights into viral replication. They also correlate with other markers of replicative activity and have predictive value for key clinical outcomes, including hepatitis B e antigen and hepatitis B surface antigen seroconversion, relapse after therapy cessation, and liver fibrosis. Similarly, hepatitis B core-related antigen is closely associated with covalently closed circular DNA levels, correlates with markers of viral replication, and shows promise in predicting liver fibrosis, cirrhosis, and the risk of hepatocellular carcinoma. This review highlights the potential of both biomarkers for monitoring disease progression and guiding therapeutic decisions, particularly in the context of personalized treatment strategies and risk assessment for liver-related complications.

Full article
Original Article Open Access
Hai Cui, Tianyi Liang, Xudong Yang, Yiwen Zhang, Ruqi Zhou, Tianqi Wang
Published online February 20, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5633
Future Integrative Medicine. doi:10.14218/FIM.2024.00055
Abstract
Recent studies have highlighted a link between amyotrophic lateral sclerosis (ALS) and gut microbiota. This prospective study aimed to evaluate the effects of electroacupuncture [...] Read more.

Recent studies have highlighted a link between amyotrophic lateral sclerosis (ALS) and gut microbiota. This prospective study aimed to evaluate the effects of electroacupuncture combined with Chinese herbal medicine on gut microbiota and metabolomics in ALS patients.

Ten ALS patients were randomly assigned to either a treatment group (electroacupuncture with Chinese herbal medicine, n = 6) or a control group (waiting treatment, n = 4). Healthy controls (age- and sex-matched, n = 10) were also included. Data were collected after 12 sessions of electroacupuncture and follow-ups at three and six months. ALS functional rating scale scores were documented pre- and post-treatment. Stool samples were collected at two time points (T0 and T4 weeks) and analyzed, and metabolomic profiles from urine samples were analyzed post-treatment. Heatmap correlation analysis was used to explore relationships between microbiota, metabolomics, and clinical outcomes.

Treatment with electroacupuncture reduced Eisenbergiella abundance in the treatment group. A significant positive correlation was found between Lachnospiraceae and ALS functional rating scale scores (P < 0.005 and P < 0.001, respectively). Differential expression of purine metabolism was observed in ALS patients (P = 0.0017).

Imbalances in the gut microbiome and metabolic disorders have been found among patients with ALS. These imbalances appear to be partially mitigated by treatment with electroacupuncture combined with Chinese herbal medicine. Our research suggests that Eisenbergiella might be a diagnostic biomarker and a potential therapeutic target for ALS.

Full article
Review Article Open Access
Xiaoshuang Liu, Lihua Ren, Ruihua Shi
Published online March 30, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5619
Cancer Screening and Prevention. doi:10.14218/CSP.2025.00002
Abstract
Reprogramming of lipid metabolism has emerged as a significant characteristic of malignancy during tumor development. Research indicates a critical link between lipid metabolism [...] Read more.

Reprogramming of lipid metabolism has emerged as a significant characteristic of malignancy during tumor development. Research indicates a critical link between lipid metabolism and the tumor immune microenvironment. This relationship not only facilitates cancer progression by remodeling the tumor microenvironment but also influences the functionality of immune cells. Alterations in lipid metabolism regulate the function and status of immune cells within the microenvironment, impacting immune evasion and the therapeutic efficacy of tumors. Consequently, targeting lipid metabolism is a viable strategy for intervening in tumorigenesis and tumor development. This review examines the roles of key lipid molecules, such as fatty acids and cholesterol, within the tumor microenvironment, highlighting how aberrant lipid metabolism can alter immune cell function. By investigating the interactions between lipid metabolism and immune cells in this setting, the review offers novel insights into early diagnosis, screening, and immunotherapy of malignant tumors. Furthermore, lipid metabolic reprogramming may act as a biomarker for monitoring early immune escape from tumors and predicting therapeutic outcomes, thereby enhancing early diagnosis and personalized cancer treatment.

Full article
PrevPage 8 of 35 127893435Next
Back to Top