v
Search
Advanced

Home > Search

Search Results
Searched Articles
  • Sorted by:
  • v
  • Results per page:
  • v
921
Original Article Open Access
Yi-Qi Liu, Chi Zhang, Jia-Wen Li, Li-Hua Cao, Zhan-Qing Zhang, Wei-Feng Zhao, Qing-Hua Shang, Da-Zhi Zhang, An-Lin Ma, Qing Xie, Hong-Lian Gui, Guo Zhang, Ying-Xia Liu, Jia Shang, Shi-Bin Xie, Jun Li, Xu-Qing Zhang, Zhi-Qiang Zou, Yu-Ping Chen, Zong Zhang, Ming-Xiang Zhang, Jun Cheng, Fu-Chun Zhang, Li-Hua Huang, Jia-Bin Li, Qing-Hua Meng, Hai-Bin Yu, Yu-Qiang Mi, Yan-Zhong Peng, Zhi-Jin Wang, Li-Ming Chen, Fan-Ping Meng, Wan-Hua Ren, Lang Bai, Yi-Lan Zeng, Rong Fan, Xian-Zhi Lou, Wei-Feng Liang, Hui Liu, Hui Zhuang, Hong Zhao, Gui-Qiang Wang
Published online June 6, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00091
Abstract
Chronic hepatitis B (CHB) can cause liver fibrosis and lead to cirrhosis and cancer. As the effectiveness of antiviral therapy to reverse liver fibrosis is limited, We aimed to [...] Read more.

Chronic hepatitis B (CHB) can cause liver fibrosis and lead to cirrhosis and cancer. As the effectiveness of antiviral therapy to reverse liver fibrosis is limited, We aimed to evaluate the effect of An-Luo-Hua-Xian pill (ALHX) on fibrosis regression in CHB patients treated with entecavir (ETV).

Treatment-naïve patients with CHB were randomly treated with ETV alone or combined with ALHX (ETV+ALHX) between October 1, 2013 and December 31, 2020. Demographic, laboratory, and liver histology data before and after 78 weeks of treatment were collected. The Ishak fibrosis score (F) was used and fibrosis regression required a decrease in F of ≥1 after treatment.

A total of 780 patients were enrolled, and 394 with a second liver biopsy after treatment were included in the per-protocol population, 132 in ETV group and 262 in ETV+ALHX group. After 78 weeks of treatment, the fibrosis regression rate in the ETV+ALHX group was significantly higher than that of the ETV group at baseline F≥3 patients: 124/211 (58.8%) vs. 45/98 (45.9%), p=0.035. The percentage of patients with a decreased liver stiffness measurement (LSM) was higher in the ETV+ALHX group: 156/211 (73.9%) vs. 62/98 (63.%), p=0.056. Logistic regression analysis showed that ETV combined with ALHX was associated with fibrosis regression [odds ratio (OR)=1.94, p=0.018], and a family history of hepatocellular carcinoma was on the contrary. (OR=0.41, p=0.031).

ETV combined with ALHX increased liver fibrosis regression in CHB patients.

Full article
922
Review Article Open Access
Nada Shaker, Qingqing Ding, Yihong Wang, Zaibo Li
Published online June 2, 2022
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2022.00010
Abstract
Triple-negative breast carcinomas (TNBCs) are defined as estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2-negative breast [...] Read more.

Triple-negative breast carcinomas (TNBCs) are defined as estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2-negative breast carcinomas and are composed of a heterogeneous group of breast carcinomas with most of them having aggressive behavior and poor prognosis. However, some TNBC cases are low grade with indolent clinical outcome and low risk of metastasis to other organs or regional lymph nodes. Low-grade TNBCs include low-grade adenosquamous carcinoma, fibromatosis-like metaplastic carcinoma, low-grade invasive (ductal or lobular) carcinoma with apocrine differentiation, classic adenoid cystic carcinoma, secretory carcinoma, tall cell carcinoma with reversed polarity, acinic cell carcinoma, and low-grade mucoepidermoid carcinoma. This review aims to summarize the clinicopathological correlation and the molecular features of low-grade special TNBC subtypes.

Full article
923
Original Article Open Access
Soo Peng Koh, Yun Shin Sew, Sarah Sabidi, Syahida Maarof, Shaiful Adzni Sharifudin, Rosmawati Abdullah
Published online June 2, 2022
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2021.00072
Abstract
Changes in eating habits and a sedentary lifestyle have shifted the primary role of food as an energy source to nutritious food for maintaining good health. A new functional jackfruit [...] Read more.

Changes in eating habits and a sedentary lifestyle have shifted the primary role of food as an energy source to nutritious food for maintaining good health. A new functional jackfruit beverage was produced using a selected symbiotic culture of bacteria and yeast (SCOBY) with the aim of developing a cost-effective anti-obesity therapy as a preventive measure.

A total of five groups of the Institute of Cancer Research mice consisting of a normal control, positive control, negative control, SCOBY jackfruit pulp, and jackfruit leaves treated mice were used to examine the anti-obesity efficacy of SCOBY jackfruit beverages. An analysis on the gut microbiota, quantitative polymerase chain reaction gene expression, short chain fatty acids, and blood composition profile was also investigated.

High-fat diet-fed obese mice treated with SCOBY jackfruit beverages showed great improvement in the weight management control and significant body weight loss (18.5–20.2%) compared to a commercial anti-obesity drug, Orlistat (11.3%). There were no adverse effects on the blood composition profile and inflammation symptoms observed in the treated obese mice. The expression of the genes relating to glucose transport, lipid biosynthesis, inflammatory cytokines, and chemokines in the adipose tissues was significantly downregulated following the SCOBY jackfruit beverages diet interventions (P < 0.05). The analysis of the 16S rRNA sequencing on the mice fecal samples revealed that SCOBY jackfruit beverages had altered the gut microbiota composition with the enhanced growth of beneficial gut microbes in those treated mice relative to all control groups.

The findings in this study implied that SCOBY jackfruit beverages were potentially useful as a new therapeutic strategy for weight management control.

Full article
924
Original Article Open Access
Agnideepa Kar, Soumen Bhattacharjee
Published online June 2, 2022
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2022.00012
Abstract
Though Amaranthus spinosus L. or ‘spiny amaranth’ belonging to the family Amaranthaceae is widely used in folklore and for ethnomedicinal purposes, little is known about the ecotype-based [...] Read more.

Though Amaranthus spinosus L. or ‘spiny amaranth’ belonging to the family Amaranthaceae is widely used in folklore and for ethnomedicinal purposes, little is known about the ecotype-based bioavailability of bioactive polyphenolic compounds that could cause health benefits. Hence, this was the objective of the present study.

Reversed-phase high-performance liquid chromatography coupled with a photodiode assay was used to investigate pharmacologically significant bioactive flavonoids and phenolic acids from hydroethanolic leaf extract of two different ecotypes (the Rarh region and coastal plain of West Bengal, India) of Amaranthus spinosus L. Furthermore, the antioxidant capacity of the leaf tissue extract of both the ecotypes of this promising crop was evaluated in terms of the metal chelating property, total antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), anti-lipid peroxidation property, and the total pool of flavonoids and phenolics for validating their health-promoting anti-degenerative chemical properties.

The results exhibited a rich source of pharmacologically important bioactive flavonoids and phenolic acids derived from the chalcone synthase and cinnamate-derived pathways for both the ecotypes, but when comparing the ecotype of the Rarh region, it proved to be superior to the ecotype of the coastal region.

Overall, the study suggests a region-specific ecotype effect on the accumulation of dietary flavonoids, phenolic acids, and antioxidant traits of Amaranthus spinosus L., thus substantiating their utility in the prevention of degenerative diseases. The study also highlighted the significance of plant-environment interaction in a secondary metabolic pathway, which may be explored in the future for improving the medicinal and functional food properties of underutilized crops for the prevention of degenerative diseases.

Full article
925
Original Article Open Access
Yang Xiao, Yan-Jun Wang, Jian-Gang Xie, Xiao-Chuang Wang
Published online June 2, 2022
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2022.00023
Abstract
Sepsis is a common and severe clinical condition with high morbidity and mortality, affecting over 19 million people annually worldwide. This study aimed to find key genes related [...] Read more.

Sepsis is a common and severe clinical condition with high morbidity and mortality, affecting over 19 million people annually worldwide. This study aimed to find key genes related to the prognosis of sepsis through transcriptomic sequencing of peripheral blood mononuclear cells from survival and death septic patients.

Seventy-eight septic patients were recruited in the emergency intensive care unit of Xijing Hospital from Apr. 1, 2018, to Jun. 30, 2020, and divided into the survival (n = 67) and death (n = 11) groups. Their PBMCs were collected for transcriptomic sequencing. The differentially expressed genes were identified by bioinformatic analyses and validated by reverse transcription polymerase chain reaction.

Bioinformatic analyses revealed 457 differentially expressed genes. The gene ontology function and kyoto encyclopedia of genes and genomes Pathway analyses suggested that the alpha-enolase 1 (ENO1) and adenylate kinase 4 were potential target genes; reverse transcription polymerase chain reaction results exhibited that ENO1, but not adenylate kinase 4, gene expression significantly decreased in the death group compared to the survival.

The ENO1 gene expression is significantly down-regulated in the death group of septic patients, suggesting that low ENO1 may be a potential prognostic biomarker for sepsis.

Full article
926
Review Article Open Access
Jiayan Huo, Shufen Wung, Janet Roveda, Ao Li
Published online June 2, 2022
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2022.00026
Abstract
Excessive false alarms in intensive care units (ICU) cause noise disturbance to patients and develop alarm fatigue among nurses, leading to safety concerns and decreased patient [...] Read more.

Excessive false alarms in intensive care units (ICU) cause noise disturbance to patients and develop alarm fatigue among nurses, leading to safety concerns and decreased patient care quality. Evidence-based false alarm reduction strategies are urgently needed in the day-to-day clinical practice. This review aims to synthesize two main human-technology approaches to reduce false alarms generated by the physiologic monitor: customization of alarm settings by nurses and alarm algorithms.

A broad search was performed using four electronic databases, PubMed, Scopus, EMBASE, and Cumulative Index to Nursing and Allied Health Literature. This review included twenty-eight full-text journal articles focused on both customizations of alarm settings and alarm algorithm improvement for false alarm reduction in the ICU.

Clinical customizations of alarm settings on bedside physiological monitors helps to reduce excessive false alarms. Colleagues also developed alarm algorithms to reduce false alarms in the ICU and achieved excellent performance.

This review suggests collaboration between nurses and engineers to optimize personalized machine learning algorithms has the great potential for false alarm reduction in the ICU.

Full article
927
Original Article Open Access
Hao Ding, Jiang-Hong Yu, Ge Ge, Yan-Yun Ma, Jiu-Cun Wang, Jun Zhang, Jie Liu
Published online June 1, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00042
Abstract
RAS protein activator like 2 (RASAL2) is a newly discovered metabolic regulator involved in energy homeostasis and adipogenesis. However, whether RASAL2 is involved in hepatic lipid [...] Read more.

RAS protein activator like 2 (RASAL2) is a newly discovered metabolic regulator involved in energy homeostasis and adipogenesis. However, whether RASAL2 is involved in hepatic lipid metabolism remains undetermined. This study explored the function of RASAL2 and elucidated its potential mechanisms in nonalcoholic fatty liver disease (NAFLD).

NAFLD models were established either by feeding mice a high-fat diet or by incubation of hepatocytes with 1 mM free fatty acids (oleic acid:palmitic acid=2:1). Pathological changes were observed by hematoxylin and eosin staining. Lipid accumulation was assessed by Oil Red O staining, BODIPY493/503 staining, and triglyceride quantification. The in vivo secretion rate of very low-density lipoprotein was determined by intravenous injection of tyloxapol. Gene regulation was analyzed by chromatin immunoprecipitation assays and hydroxymethylated DNA immunoprecipitation combined with real-time polymerase chain reaction.

RASAL2 deficiency ameliorated hepatic steatosis both in vivo and in vitro. Mechanistically, RASAL2 deficiency upregulated hepatic TET1 expression by activating the AKT signaling pathway and thereby promoted MTTP expression by DNA hydroxymethylation, leading to increased production and secretion of very low-density lipoprotein, which is the major carrier of triglycerides exported from the liver to distal tissues.

Our study reports the first evidence that RASAL2 deficiency ameliorates hepatic steatosis by regulating lipid metabolism through the AKT/TET1/MTTP axis. These findings will help understand the pathogenesis of NAFLD and highlight the potency of RASAL2 as a new molecular target for NAFLD.

Full article
928
Original Article Open Access
Jiaxuan Chen, Shuang Lou, Haitao Chen, Bin Zhou, Jian Sun, Jinlin Hou, De-Ke Jiang
Published online June 1, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00057
Abstract
Only a small percentage of chronic hepatitis B (CHB) patients effectively respond to treatment with pegylated-interferon alpha (PegIFNα) or nucleos(t)ide analogues (NUCs). We aimed [...] Read more.

Only a small percentage of chronic hepatitis B (CHB) patients effectively respond to treatment with pegylated-interferon alpha (PegIFNα) or nucleos(t)ide analogues (NUCs). We aimed to detect the correlations of complement regulators-associated single-nucleotide polymorphisms (SNPs) with treatment response of hepatitis B e antigen (HBeAg)-positive CHB patients.

A total of 1,763 HBeAg-positive CHB patients were enrolled, 894 received PegIFNα for at least 48 weeks and were followed up for 24 weeks, and 869 received NUCs for 104 weeks. For each patient, nine SNPs in genes encoding for complement regulators were determined and genotyped. To assess the cumulative effect of numerous SNPs, a polygenic score (PGS) was utilized. The correlations of SNPs and PGS with the levels of combined response (CR) and hepatitis B s antigen (HBsAg) loss were also investigated.

In PegIFNα-treated patients, an intronic SNP of CD55, rs28371597, was strongly related to CR, and the CR rate in rs28371597_GG genotype carriers was only approximately half that of rs28371597_GT/TT genotype carriers (20.29% vs. 37.10%, p=2.00 × 10−3). A PGS incorporating CD55_rs28371597 and two additional SNPs, CFB_rs12614 and STAT4_rs7574865, which had been considered as predictors for PegIFNα treatment response before, was strongly correlated with the levels of CR (p-trend=7.94×10−6) and HBsAg loss (p-trend=9.40×10−3) in PegIFNα-treated patients. In NUCs-treated individuals, however, none of the nine SNPs were shown to be significantly linked to CHB treatment response.

CD55_rs28371597 is a promising biomarker for predicting CHB patients’ responsiveness to PegIFNα therapy. The updated PGS may be used for optimizing CHB treatment.

Full article
929
Review Article Open Access
Abdurashid Khamidovich Ashirmetov
Published online June 1, 2022
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2022.00034
Abstract
The pandemic emergency has created an urgent need to find suitable drugs to treat coronavirus disease 2019 (COVID-19). Numerous drug trials have been conducted; however, effective [...] Read more.

The pandemic emergency has created an urgent need to find suitable drugs to treat coronavirus disease 2019 (COVID-19). Numerous drug trials have been conducted; however, effective and affordable treatments have not been found. The study aimed to find ways out of the current situation based on a better understanding of events, an analysis of the causes of the difficulties encountered on this issue. The study analyzed articles based on the results of COVID-19 treatment identified in PubMed, Clinical Key, ScienceDirect, World Health Organization (WHO), Food and Drug Administration (FDA), and Google Scholar’s online libraries. This review summarizes and critically analyzes the information accumulated over the pandemic on the efficacy of drugs for the treatment of COVID-19 and the reasons for the inconsistency in the results of clinical trials on repurposed drugs, and the role of mutations in new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, in reducing the effectiveness of vaccination and treatment, and determining the possibility of overcoming them in the future. Recent achievements in finding effective ways to combat viral pandemics are shown. According to the results of clinical trials, only remdesivir and sotrovimab have been recommended for the treatment of COVID-19. The prospects in the fight against COVID-19 are the creation of new antiviral drugs, such as cyanorone-20 and antisense oligonucleotides (ASOs), and a proactive strategy for the development of drugs against viral pathogens, which are based on cocktails of panvirus drugs for oral and inhalation administration.

Full article
930
Original Article Open Access
Na-Ling Kang, Qing-Fa Ruan, De-Sheng Zhang, Xue-Ping Yu, Zhen-Ting Hu, Zhi-Min Lin, Lu-Ying Wu, Meng-Xin Lin, Zu-Xiong Huang, Jia-Ji Jiang, Yu-Rui Liu, Ri-Cheng Mao, Da-Wu Zeng
Published online June 1, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00098
Abstract
Aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) are widely used to assess liver fibrosis in chronic hepatitis B virus (HBV) infection. Currently, [...] Read more.

Aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) are widely used to assess liver fibrosis in chronic hepatitis B virus (HBV) infection. Currently, the definition of normal alanine aminotransferase (ALT) is controversial. We aimed to examine the diagnostic value of APRI and FIB-4 in chronic HBV carriers with different upper limits of normal (ULNs) for ALT.

581 chronic HBV carriers were divided into the following four groups based on different ULNs for ALT: chronic HBV carriers I, II, III, and IV. Furthermore, 106 chronic HBV carriers formed an external validation group. Predictive values of APRI and FIB-4 were elucidated using the area under the curve (AUC). A liver fibrosis-predictive model-GPSA (named for its measure of gamma glutamyl transpeptidase, platelet count, HBsAg and albumin) was developed using multivariate logistic regression analysis.

In chronic HBV carriers I, the AUCs of APRI and FIB-4 were 0.680 and 0.609 for significant fibrosis and 0.678 and 0.661 for cirrhosis, respectively. The AUCs of GPSA for significant fibrosis in the training group, internal group, and external validation group were 0.877, 0.837, and 0.871, respectively. The diagnostic value of GPSA differed among chronic HBV carriers I, II, III, and IV, with AUCs for significant fibrosis being 0.857, 0.853, 0.868, and 0.905 and AUCs for cirrhosis being 0.901, 0.905, 0.886, and 0.913, respectively. GPSA showed a higher diagnostic value than APRI and FIB-4 for predicting significant fibrosis in the four groups.

The GPSA model allows for accurate diagnosis of liver fibrosis in chronic HBV carriers with different ULN for ALT.

Full article
931
Review Article Open Access
Heidi Schwarzenbach, Peter B. Gahan
Published online May 31, 2022
Cancer Screening and Prevention. doi:10.14218/CSP.2022.00004
Abstract
DNA methylation is essential for regulating tissue-specific gene expression, genomic imprinting, X chromosome inactivation and retroviral element silencing. The transformation from [...] Read more.

DNA methylation is essential for regulating tissue-specific gene expression, genomic imprinting, X chromosome inactivation and retroviral element silencing. The transformation from normal to cancer cells is accompanied by changes in DNA methylation resulting in the activation of oncogenes and inactivation of tumor suppressor genes. This process is regulated by methylation and contributes to the support and development of tumors. Epigenetic modifications account for the development of resistance in cancer cells treated with anticancer drugs. Dysregulated signaling pathways involved in tumor drug resistance include the Wnt canonical and non-canonical pathways and the PI3K/PTEN/AKT/mTOR pathway. This review considers the mechanisms and specific methylated biomarkers that participate in such resistances and how resistance to individual treatments for breast, ovarian, uterine and cervix tumors are introduced.

Full article
932
Review Article Open Access
Alec Clark, Brandon P. Lucke-Wold
Published online May 31, 2022
Future Integrative Medicine. doi:10.14218/FIM.2022.00010
Abstract
Acupuncture has been a staple of Eastern medicine for thousands of years. Recent evidence has shown that the benefits for spinal stenosis are strong. In this comprehensive review, [...] Read more.

Acupuncture has been a staple of Eastern medicine for thousands of years. Recent evidence has shown that the benefits for spinal stenosis are strong. In this comprehensive review, the history and available literature will be reviewed. In addition, how the techniques have evolved, and their clinical utility will be discussed. The process and progression of spinal stenosis are addressed. The mechanism of action for acupuncture and the relevant treatment implications will be discussed. This is important in alleviating pain and providing a good quality of life. The findings in the pre-operative, peri-operative, and postoperative periods are highlighted. Finally, the preclinical data provide compelling evidence for novel pathways to be targeted. This resource could serve as a user-friendly guide for the clinician and scientist on this important topic. It might be the catalyst of ongoing investigation from clinical and preclinical sides.

Full article
933
Original Article Open Access
Zhihao Xu, Feiyang Xi, Xinxin Deng, Yuqi Ni, Changqin Pu, Dan Wang, Weiming Lou, Xufang Zeng, Ning Su, Chen Chen, Ziqiang Zeng, Libin Deng, Meixiu Jiang
Published online May 31, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2021.00474
Abstract
Osteopontin (OPN) is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the function of OPN in NAFLD is still inconclusive. Therefore, [...] Read more.

Osteopontin (OPN) is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the function of OPN in NAFLD is still inconclusive. Therefore, our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms.

We analyzed the expression change of OPN in NAFLD by bioinformatic analysis, qRT-PCR, western blotting and immunofluorescence staining. To clarify the role of OPN in NAFLD, the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting.

OPN was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data, and the high expression of OPN was related with disease stage and progression. OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse, and in HepG2 cells treated with oleic acid (OA). Furthermore, the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization. Mechanistically, OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1 (STAT1) signaling pathway in HepG2 cells, and consequently HepG2 cells secreted more high-mobility group box 1 (HMGB1), thereby promoting macrophage M1 polarization.

OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.

Full article
934
Original Article Open Access
Ahmad Shanei, Mahnaz Etehadtavakol, Mohammadreza Azizian, Eddie Y.K. Ng
Published online May 31, 2022
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2022.00013
Abstract
A support vector machine (SVM) is one of the most powerful classifiers in machine learning that can be applied when a data set is introduced in two classes in a high dimensional [...] Read more.

A support vector machine (SVM) is one of the most powerful classifiers in machine learning that can be applied when a data set is introduced in two classes in a high dimensional feature space. The objective of this study is to compare different kernels of SVMs to classify prostate cancerous tissues.

In the present study, a novel algorithm was proposed to classify cancerous prostate tissues. Five features, among 14 Haralick, were chosen as the most significant features: contrast, correlation, homogeneity, energy, and entropy. In addition, 17 features were calculated from each outlined region of interest (ROI) on the images. Then, the dimensionality number of the features set was reduced from 17 to 5 using the principal component analysis (PCA) technique. The reduced features were considered as given inputs to an SVM algorithm for classification.

The sensitivity of the SVM was 0.9565 with the radial basis function (RBF), and 0.9097 and 0.9028 were achieved with the Gaussian and the linear kernels, respectively. Moreover, the accuracy of the linear, RBF, and Gaussian functions were 0.9028, 0.8405, and 0.8239, respectively.

The RBF is preferable compared with the other examined functions due to the highest sensitivity and the second-largest accuracy.

Full article
935
Original Article Open Access
Jieling Xiao, Cheng-Han Ng, Yip-Han Chin, Darren Jun Hao Tan, Wen-Hui Lim, Grace Lim, Jingxuan Quek, Ansel Shao Pin Tang, Kai-En Chan, Rou-Yi Soong, Nicholas Chew, Benjamin Tay, Daniel Q. Huang, Nobuharu Tamaki, Roger Foo, Mark Y. Chan, Mazen Noureddin, Mohammad Shadab Siddiqui, Arun J. Sanyal, Mark D. Muthiah
Published online May 30, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00095
Abstract
Pharmaceutical therapy for NASH is associated with lipid modulation, but the consensus on drug treatment is limited and lacks comparative analysis of effectiveness. A network meta-analysis [...] Read more.

Pharmaceutical therapy for NASH is associated with lipid modulation, but the consensus on drug treatment is limited and lacks comparative analysis of effectiveness. A network meta-analysis was conducted to compare NASH drug classes in lipid modulation.

Online databases were searched for randomized controlled trails (RCTs) evaluating NASH treatments in biopsy-proven NASH patients. Treatments were classified into four groups: (1) inflammation, (2) energy, (3) bile acids, and (4) fibrosis based on the mechanism of action. A Bayesian network analysis was conducted with outcome measured by mean difference (MD) with credible intervals (Crl) and surface under the cumulative ranking curve (SUCRA).

Forty-four RCTs were included in the analysis. Bile acid modulating treatments (MD: 0.05, Crl: 0.03–0.07) were the best treatment for improvement in high-density lipid (HDL) cholesterol, followed by treatments modulating energy (MD: 0.03, Crl: 0.02–0.04) and fibrosis (MD: 0.01, Crl: −0.12 to 0.14) compared with placebo. The top three treatments for reduction in triglycerides were treatments modulating energy (MD: −0.46, Crl: −0.49 to −0.43), bile acids (MD: −0.22, Crl: −0.35 to −0.09), and inflammation (MD: −0.08, Crl: −0.13 to −0.03) compared with placebo. SUCRA found treatment modulating fibrosis (MD: −1.27, Crl: −1.76 to −0.79) was the best treatment for reduction in low-density lipid (LDL) cholesterol followed by treatment modulating inflammation (MD: −1.03, Crl: −1.09 to −0.97) and energy (MD: −0.37, Crl: −0.39 to −0.34) compared with placebo, but LDL cholesterol was worsened by treatments modulating bile acids.

Network analysis comparing the class effects of dyslipidemia modulation in NASH found that treatment targets can include optimization of atherogenic dyslipidemia. Future studies are required to evaluate the cardiovascular outcomes.

Full article
936
Review Article Open Access
Emmanouil S. Koullias, John Koskinas
Published online May 30, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2021.00564
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes mellitus type 2 commonly coexist as a manifestation of metabolic syndrome. The presence of diabetes promotes the progression [...] Read more.

Non-alcoholic fatty liver disease (NAFLD) and diabetes mellitus type 2 commonly coexist as a manifestation of metabolic syndrome. The presence of diabetes promotes the progression of simple fatty liver to non-alcoholic steatohepatitis (NASH) and cirrhosis, and the presence of NAFLD increases the risk of diabetic complications. This coexistence affects a large part of the population, imposing a great burden on health care systems worldwide. Apart from diet modification and exercise, recent advances in the pharmacotherapy of diabetes offer new prospects regarding liver steatosis and steatohepatitis improvement, enriching the existing algorithm and supporting a multifaceted approach to diabetic patients with fatty liver disease. These agents mainly include members of the families of glucagon-like peptide-1 analogues and the sodium-glucose co-transporter-2 inhibitors. In addition, agents acting on more than one receptor simultaneously are presently under study, in an attempt to further enhance our available options.

Full article
937
Original Article Open Access
Feng-Yong Liu, Ming Shi, Xin Li, Hong-Jun Yuan, Xiao-Mei Tian, Yi-Mao Xia, Min Zhou, Fu-Sheng Wang
Published online May 27, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2021.00580
Abstract
Stem cell transplantation is a potential treatment option for liver cirrhosis (LC). Accurately and noninvasively monitoring the distribution, migration, and prognosis of transplanted [...] Read more.

Stem cell transplantation is a potential treatment option for liver cirrhosis (LC). Accurately and noninvasively monitoring the distribution, migration, and prognosis of transplanted stem cells using imaging methods is important for in-depth study of the treatment mechanisms. Our study aimed to develop Au-Fe3O4 silica nanoparticles (NPs) as tracking nanoplatforms for dual-modal stem cell imaging.

Au-Fe3O4 silica NPs were synthesized by seed-mediated growth method and co-precipitation. The efficiency and cytotoxicity of the NPs-labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) were evaluated by Cell Counting Kit-8 assays, ICP-MS, phenotypic characterization, and histological staining. The biodistribution of labeled BM-MSCs injected through different routes (the hepatic artery or tail vein) into rats with LC was detected by magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and Prussian blue staining.

Synthesized Au-Fe3O4 silica NPs consisted of a core (star-shaped Au NPs) and an outside silica layer doped with Fe3O4 NPs. After 24 h coincubation with 2.0 OD concentration of NPs, the viability of BM-MSCs was 77.91%±5.86% and the uptake of Au and Fe were (22.65±1.82) µg/mL and (234.03±11.47) µg/mL, respectively. The surface markers of labeled BM-MSCs unchanged significantly. Labeled BM-MSCs have osteogenic and adipogenic differentiation potential. Post injection in vivo, rat livers were hypointense on MRI and hyperintense on PAI. Prussian blue staining showed that more labeled BM-MSCs accumulated in the liver of the hepatic artery group. The severity of LC of the rats in the hepatic artery group was significantly alleviated.

Au-Fe3O4 silica NPs were suitable MRI/PAI dual-modal imaging nanoplatforms for stem cell tracking in regenerative medicine. Transhepatic arterial infusion of BM-MSCs was the optimal route for the treatment of LC.

Full article
938
Original Article Open Access
Shiwei Wang, Lingling He, Fan Xiao, Meixin Gao, Herui Wei, Junru Yang, Yang Shu, Fuyang Zhang, Xiaohui Ye, Ping Li, Xiaohua Hao, Xingang Zhou, Hongshan Wei
Published online May 26, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00005
Abstract
Collagen β(1-O) galactosyltransferase 25 domain 1 (GLT25D1) is associated with collagen production and glycosylation, and its knockout in mice results in embryonic death. However, [...] Read more.

Collagen β(1-O) galactosyltransferase 25 domain 1 (GLT25D1) is associated with collagen production and glycosylation, and its knockout in mice results in embryonic death. However, its role in liver fibrosis remains elusive, particularly in hepatic stellate cells (HSCs), the primary collagen-producing cells associated with liver fibrogenesis. Herein, we aimed to elucidate the role of GLT25D1 in HSCs.

Bile duct ligation (BDL)-induced mouse liver fibrosis models, primary mouse HSCs (mHSCs), and transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 human hepatic stellate cells were used in in vivo and in vitro studies. Stable LX-2 cell lines with either GLT25D1 overexpression or knockdown were established using lentiviral transfection. RNA-seq was performed to investigate the genomic differences. HPLC-MS/MS were used to identify glycosylation sites. Scanning electronic microscopy (SEM) and second-harmonic generation/two-photon excited fluorescence (SHG/TPEF) were used to image collagen fibril morphology.

GLT25D1 expression was upregulated in nonparenchymal cells in human cirrhotic liver tissues. Meanwhile, its knockdown attenuated collagen deposition in BDL-induced mouse liver fibrosis and inhibited mHSC activation. GLT25D1 was overexpressed in activated versus quiescence LX-2 cells and regulated in vitro LX-2 cell activation, including proliferation, contraction, and migration. GLT25D1 also significantly increased liver fibrogenic gene and protein expression. GLT25D1 upregulation promoted HSC activation and enhanced collagen expression through the TGF-β1/SMAD signaling pathway. Mass spectrometry showed that GLT25D1 regulated the glycosylation of collagen in HSCs, affecting the diameter of collagen fibers.

Collectively, the upregulation of GLT25D1 in HSCs promoted the progression of liver fibrosis by affecting HSCs activation and collagen stability.

Full article
939
Review Article Open Access
Sherouk Fouda, Madhu Mathew Vennikandam, Joseph M. Pappachan, Cornelius J. Fernandez
Published online May 26, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2022.00052
Abstract
The intricate relationship between metabolic-associated fatty liver disease (MAFLD) and maternal complications has rapidly become a significant health threat in pregnant women. [...] Read more.

The intricate relationship between metabolic-associated fatty liver disease (MAFLD) and maternal complications has rapidly become a significant health threat in pregnant women. The presence of MAFLD in pregnancy increases the maternal risk of metabolic complications and comorbidities for both mother and baby. The preexistence or development of MAFLD in pregnancy is a complex multifactorial disorder that can lead to further complications for mother and baby. Therefore, as pregnant women are severely underrepresented in clinical research, there is a great need for a fair inclusion of this group in clinical trials. This review aims to explore the effects of MAFLD during pregnancy in the context of maternal complications and outcomes and explore the effects of pregnancy on the development and progression of MAFLD within the context of maternal obesity, altered metabolic profiles, gestational diabetes and altered hormonal profiles. We also addressed potential implications for the presence of MAFLD during pregnancy and its management in the clinical setting.

Full article
940
Illuminating and Instructive Clinical Case Open Access
Marco Ferronato, Claudine Lalanne, Chiara Quarneti, Michele Cevolani, Chiara Ricci, Alessandro Granito, Luigi Muratori, Marco Lenzi
Published online May 24, 2022
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2021.00573
Abstract
Hepatocellular carcinoma (HCC) is rarely associated with autoimmune paraneoplastic syndromes. We report a case of anti-transcriptional intermediary factor-1 gamma (TIF1-γ)-positive [...] Read more.

Hepatocellular carcinoma (HCC) is rarely associated with autoimmune paraneoplastic syndromes. We report a case of anti-transcriptional intermediary factor-1 gamma (TIF1-γ)-positive dermatomyositis (DM) as clinical presentation of HCC recurrence in a 72-year-old male patient admitted to our hospital due to fatigue, myalgia, and typical skin rash. His medical history was notable for hepatitis C-related cirrhosis, successful treatment with direct-acting antiviral agents, and previously efficacious treatment of HCC. Laboratory testing showed significant rhabdomyolysis with anti-TIF1-γ antibodies at high titer, and DM was diagnosed. After a careful diagnostic workup, HCC recurrence was diagnosed. After first-line corticosteroid treatment, azathioprine and intravenous immunoglobulin treatments were administered; unfortunately, he mounted only partial response. Owing to the compromised performance status, no HCC treatment was feasible, and, according to international guidelines, he received only best supportive care. Here, we discuss the diagnostic, prognostic, and pathogenic roles of anti-TIF1-γ antibodies associated with paraneoplastic DM and the scant literature data on its occurrence in HCC patients. Considering the TIF1 gene family’s established role in oncogenesis, we also review the role of TIF1-γ as a tumor-related neoantigen, leading to the development of clinically overt anti-TIF1-γ antibodies-positive DM.

Full article
PrevPage 47 of 118 12464748117118Next
Back to Top