v
Search
Advanced

Home > Search

Search Results
Searched Articles
  • Sorted by:
  • v
  • Results per page:
  • v
141
Original Article Open Access
Biwu Wu, Haoyue Yuan, Qiang Yuan, Gang Wu, Jin Hu
Published online April 3, 2025
Neurosurgical Subspecialties. doi:10.14218/NSSS.2025.00006
Abstract
Surgical management of supratentorial spontaneous intracerebral hemorrhage (sICH) remains controversial. Craniotomy (CT) reduces mortality but offers limited functional benefits. [...] Read more.

Surgical management of supratentorial spontaneous intracerebral hemorrhage (sICH) remains controversial. Craniotomy (CT) reduces mortality but offers limited functional benefits. Neuroendoscopic surgery (NE) has emerged as a viable alternative, providing improved outcomes. Recent randomized controlled trials (RCTs) strengthen ongoing comparisons between these approaches. This meta-analysis systematically evaluates the efficacy and safety of NE versus CT for supratentorial sICH.

RCTs comparing NE versus CT for supratentorial sICH were systematically identified through comprehensive searches of PubMed, Embase, Cochrane Library, and Web of Science databases. Evaluated outcomes included functional outcome (favorable or unfavorable), hematoma evacuation rate, mortality, intraoperative blood loss, operation time, rebleeding, infection (including pulmonary and intracranial), and total complications. Cochrane’s Risk of Bias-2 tool was employed to assess the risk of bias across the included studies.

Eight RCTs were included, comprising 1,354 patients. NE demonstrated a significant advantage in achieving a favorable functional outcome (risk ratio: 1.43; 95% confidence interval (CI) 1.22, 1.68; p < 0.001) and a notably higher hematoma evacuation rate (mean difference (MD): 7.60; 95% CI 3.59, 11.61; p < 0.001). Additionally, NE was associated with a marked reduction in intraoperative blood loss (MD: −152.95; 95% CI −261.68, −44.22; p = 0.006) and a substantial reduction in operative time (MD: −118.49; 95% CI −147.30, −89.67; p < 0.001). The incidences of unfavorable functional outcome and total complications, including pulmonary infection, were significantly lower in the NE group. However, NE did not lead to an improvement in the mortality rate, and there were no significant differences in the incidences of postoperative rebleeding or intracranial infection between the two groups.

These findings suggest that NE offers distinct advantages in terms of functional outcomes and surgical efficiency for patients with supratentorial sICH. Future studies should involve larger, higher-quality RCTs, and neuroendoscopic techniques should be continuously optimized.

Full article
142
Mini Review Open Access
Iris Z. Shen, Lanjing Zhang
Published online April 3, 2025
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2025.00007
Abstract
With the increasing use of artificial intelligence (AI) in diagnostics, AI algorithms have shown great potential in aiding diagnostics. As more of these algorithms are developed, [...] Read more.

With the increasing use of artificial intelligence (AI) in diagnostics, AI algorithms have shown great potential in aiding diagnostics. As more of these algorithms are developed, there is overwhelming enthusiasm for implementing digital and artificial intelligence-based pathology (DAIP), but doubts and pitfalls are also emerging. However, few original or review articles address the limitations and practical aspects of implementing DAIP. In this review, we briefly examine the evidence related to the benefits and pitfalls of DAIP implementation and argue that DAIP is not suitable for every clinical laboratory.

We searched the PubMed database using the following keywords: “digital pathology,” “digital AI pathology,” and “AI pathology.”. Additionally, we incorporated personal experiences and manually searched related papers.

Ninety-two publications were found, of which 24 met the inclusion criteria. Many advantages of DAIP were discussed, including improved diagnostic accuracy and equity. However, several limitations of implementing DAIP exist, such as financial constraints, technical challenges, and legal/ethical concerns.

We found a generally favorable but cautious outlook for the implementation of DAIP in the pathology workflow. Many studies have reported promising outcomes in using AI for diagnosis and analysis; however, there are also several noteworthy limitations in implementing DAIP. Therefore, a balance between the benefits and pitfalls of DAIP must be thoroughly articulated and examined in light of the institution’s needs and goals before making the decision to implement DAIP. Approaches for mitigating machine learning biases were also proposed, and the adaptation and growth of the pathology profession were discussed in light of DAIP development and advances.

Full article
143
Review Article Open Access
Swarup K. Chakrabarti, Dhrubajyoti Chattopadhyay
Published online April 1, 2025
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2024.00046
Abstract
This review explores how the gut microbiome influences aging, particularly examining the effects of microbiome imbalances (dysbiosis) on immune system function, inflammation, and [...] Read more.

This review explores how the gut microbiome influences aging, particularly examining the effects of microbiome imbalances (dysbiosis) on immune system function, inflammation, and the integrity of genetic material. As we age, there is a noticeable decline in cellular and physiological capabilities, which heightens the risk of diseases and diminishes the body’s resilience to stress. A significant contributor to this decline is the change in the gut microbiome, which affects immune reactions, triggers chronic inflammation, and worsens DNA damage. The review is structured into several key areas: first, the connection between dysbiosis and age-related ailments such as rheumatoid arthritis, Crohn’s disease, and systemic lupus erythematosus; second, how aging influences immune tolerance, especially regarding dendritic cells, and its link to autoimmune diseases; third, the acceleration of immunosenescence and the prolonged inflammatory responses associated with aging; and fourth, the impact of senescent cells and oxidative stress on increasing inflammation and damaging DNA. We also underscored the significance of short-chain fatty acids produced by beneficial gut bacteria in modulating immune responses and facilitating DNA repair. The discussion includes the potential use of probiotics and other microbiome-related interventions as treatment options to promote healthy aging. Ultimately, we stressed the necessity for additional research to deepen our comprehension of the microbiome’s effect on DNA damage and to create personalized therapeutic strategies for fostering healthier aging and enhancing longevity.

Full article
144
Original Article Open Access
Maryam Zand, Mehdi Sadegh, Behzad khansarinejad, Mahdieh Mondanizadeh
Published online March 31, 2025
Gene Expression. doi:10.14218/GE.2024.00073
Abstract
Spinal cord injury (SCI) significantly impacts the central nervous system, with limited effective treatments available. Brain-derived neurotrophic factor (BDNF) plays a crucial [...] Read more.

Spinal cord injury (SCI) significantly impacts the central nervous system, with limited effective treatments available. Brain-derived neurotrophic factor (BDNF) plays a crucial role in neuronal growth, survival, and regeneration after SCI. MicroRNAs, particularly miR-124-3p, have been implicated in SCI pathophysiology. However, the relationship between miR-124-3p and BDNF in the context of SCI remains unclear. This study aimed to investigate the correlation between miR-124-3p expression and BDNF levels in a rat model of spinal cord injury and to assess how the timing of injury affects this relationship.

This study included 72 male Wistar rats divided into three groups: intact (n = 8), sham (n = 32), and SCI (n = 32). SCI diagnosis was confirmed through behavioral-motor function analysis using the Basso, Beattie & Brenham score and histological examination with crystal violet staining. The expression levels of miR-124-3p and BDNF were assessed using real-time polymerase chain reaction in all groups at four time points (one hour, one day, three days, and seven days post-injury).

In the SCI group, a marked reduction in miR-124-3p expression was observed relative to both the sham and intact groups. Conversely, there was a substantial elevation in BDNF expression within the SCI group in comparison to the sham and intact groups. The findings underscore a negative association between miR-124-3p expression and BDNF messenger RNA levels.

The downregulation of miR-124-3p and concurrent upregulation of BDNF suggest a potential regulatory role of miR-124-3p in modulating BDNF expression during SCI. These findings provide new insights into the molecular mechanisms underlying SCI and suggest that miR-124-3p and BDNF could serve as potential therapeutic targets. Further research is needed to explore the translational potential of these findings for developing novel diagnostic and therapeutic strategies for SCI.

Full article
145
Editorial Open Access
Hong-Yang Zhao, Wai-Sang Poon
Published online March 30, 2025
Neurosurgical Subspecialties. doi:10.14218/NSSS.2025.00013
146
Review Article Open Access
Shunsuke Koga, Wei Du, Guang Yang, Linsheng Zhang
Published online March 30, 2025
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2025.00008
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and play a pivotal role in leukemogenesis. The two primary [...] Read more.

FMS-like tyrosine kinase 3 (FLT3) mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and play a pivotal role in leukemogenesis. The two primary mutation types, internal tandem duplications (ITDs) and tyrosine kinase domain point mutations, serve as key prognostic markers and therapeutic targets. Advances in next-generation sequencing (NGS) have revolutionized FLT3 mutation detection by providing precise insights into mutation architecture, enhancing risk stratification, and enabling personalized treatment strategies. Additionally, these advancements have facilitated molecular minimal residual disease (MRD) testing, which is instrumental in guiding post-remission management. This review summarizes the molecular characteristics, diagnostic approaches, and therapeutic implications of FLT3 mutations in hematologic malignancies.

A narrative review of the current literature on FLT3 mutations was conducted, incorporating data from original research articles, clinical trials, and recent reviews. Relevant studies were identified through a PubMed literature search and manually curated.

FLT3 mutations are detected in approximately 30% of AML cases and occur at lower frequencies in myelodysplastic syndromes, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and mixed phenotype acute leukemia. NGS enables comprehensive mutation profiling, revealing rare variants and subclonal complexity while supporting MRD detection with high analytic sensitivity. FLT3-ITD-based MRD positivity is strongly associated with relapse and poor survival in AML. Clinical trial data support FLT3 inhibitors, including midostaurin, gilteritinib, and quizartinib, in FLT3-mutated AML. Additionally, MRD-guided therapy and combination treatment strategies are promising approaches to overcoming resistance.

FLT3 mutations play a central role in the pathogenesis and treatment of AML and related malignancies. NGS-based testing and MRD monitoring transform clinical decision-making by refining risk stratification and enabling personalized therapeutic interventions. Establishing standardized testing protocols and the broader integration of FLT3-targeted therapies will be essential for optimizing patient outcomes.

Full article
147
Original Article Open Access
Giullia de Souza Santos, Rafaela Marie Melo da Cunha, Ricardo Alves da Silva, Thauan Costa da Silva, Thiago Antonio Costa do Nascimento, Lucas Marques da Cunha
Published online March 30, 2025
Oncology Advances. doi:10.14218/OnA.2024.00032
Abstract
Prostate cancer is the second most diagnosed cancer in men worldwide and a significant cause of cancer-related death. Proteogenomic analysis offers insights into how genomic mutations [...] Read more.

Prostate cancer is the second most diagnosed cancer in men worldwide and a significant cause of cancer-related death. Proteogenomic analysis offers insights into how genomic mutations influence protein expression and can identify novel biomarkers. This study aimed to investigate the impact of missense mutations on protein abundance in prostate cancer versus healthy tissues using SILAC-based quantitative proteomics.

Mass spectrometry data from prostate tumors and adjacent healthy tissues were analyzed using stable isotope labeling. Peptides were classified based on their abundance into RefSeq and Variant Abundant groups. Missense mutations were mapped via RefSeq and dbPepVar databases. Protein intensity metrics were compared, and Spearman’s correlation was used to evaluate the relationship between mutation presence and protein abundance.

Functional enrichment revealed that RefSeq Abundant proteins are involved in normal metabolic and structural functions, while Variant Abundant proteins are enriched in tumor-related pathways such as immune evasion and apoptosis suppression. A significant negative correlation was found between protein intensity difference and ratio (p < 0.05), indicating that missense mutations contribute to altered protein expression. Mutation hotspot analysis identified recurrent alterations in genes such as PPIF and ACTB. PROVEAN was used to evaluate the functional impact of variants, identifying several as deleterious to protein stability and function.

Missense mutations are associated with altered protein abundance and may promote oncogenic processes in prostate cancer. These findings enhance the understanding of genome-proteome interactions and could support the development of targeted biomarkers and therapies.

Full article
148
Review Article Open Access
Xiaoshuang Liu, Lihua Ren, Ruihua Shi
Published online March 30, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2025.00002
Abstract
Reprogramming of lipid metabolism has emerged as a significant characteristic of malignancy during tumor development. Research indicates a critical link between lipid metabolism [...] Read more.

Reprogramming of lipid metabolism has emerged as a significant characteristic of malignancy during tumor development. Research indicates a critical link between lipid metabolism and the tumor immune microenvironment. This relationship not only facilitates cancer progression by remodeling the tumor microenvironment but also influences the functionality of immune cells. Alterations in lipid metabolism regulate the function and status of immune cells within the microenvironment, impacting immune evasion and the therapeutic efficacy of tumors. Consequently, targeting lipid metabolism is a viable strategy for intervening in tumorigenesis and tumor development. This review examines the roles of key lipid molecules, such as fatty acids and cholesterol, within the tumor microenvironment, highlighting how aberrant lipid metabolism can alter immune cell function. By investigating the interactions between lipid metabolism and immune cells in this setting, the review offers novel insights into early diagnosis, screening, and immunotherapy of malignant tumors. Furthermore, lipid metabolic reprogramming may act as a biomarker for monitoring early immune escape from tumors and predicting therapeutic outcomes, thereby enhancing early diagnosis and personalized cancer treatment.

Full article
149
Mini Review Open Access
Hongyan Liu, Hao Ai, Ying Liu
Published online March 30, 2025
Oncology Advances. doi:10.14218/OnA.2024.00034
Abstract
Endometrial cancer (EC) is one of the most prevalent malignancies of the female reproductive system and ranks among the three primary types of gynecological cancers. Recent trends [...] Read more.

Endometrial cancer (EC) is one of the most prevalent malignancies of the female reproductive system and ranks among the three primary types of gynecological cancers. Recent trends indicate a rising incidence of EC in younger patients, highlighting the urgent need for effective early screening strategies. This review examines the challenges associated with early diagnosis and screening, including ambiguous methodologies (e.g., transvaginal ultrasound: sensitivity 80–90%, specificity 60–70%), undefined target populations, and the absence of efficient, cost-effective, minimally invasive solutions (e.g., cytology sensitivity ≤50% in community settings). The article provides an overview of the current landscape and emerging innovations in universal EC screening, highlighting advancements in early detection and diagnosis, such as DNA methylation panels (sensitivity 89–94%, specificity 91–97% in phase II trials) and vibrational spectroscopy (sensitivity 92%, specificity 88% in pilot studies). Additionally, future directions for implementing effective screening strategies are explored, emphasizing the potential of high-accuracy biomarkers and scalable technologies to reduce mortality and healthcare costs.

Full article
150
Review Article Open Access
Ciro Comparetto, Franco Borruto
Published online March 30, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2024.00032
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection of breast cancer significantly improves outcomes and survival rates, minimizing [...] Read more.

Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection of breast cancer significantly improves outcomes and survival rates, minimizing treatments. Imaging techniques are critical in identifying abnormalities and diagnosing breast cancer at its earliest stages, often before clinical symptoms emerge. Mammography remains standard for screening in average-risk women, while supplementary methods like ultrasound, magnetic resonance imaging, and tomosynthesis enhance detection rates, particularly in women with dense breasts or those at high risk. Given that certain factors, such as family history, age, genetic mutations, and breast density, affect the risk of developing breast cancer, some women may benefit from earlier or more frequent screenings. Personalized screening protocols are becoming more common, tailoring the type and frequency of imaging to the individual’s risk profile. Newer technologies, such as molecular breast imaging and contrast-enhanced mammography show promise but require further validation for widespread use. In conclusion, imaging techniques including mammography, ultrasound, magnetic resonance imaging, and newer technologies like three-dimensional mammography and molecular breast imaging are essential tools in the early detection of breast cancer, leading to better outcomes for patients. This literature review provides an overview of current breast cancer imaging methods, their role in early diagnosis, and their effectiveness and limitations.

Full article
151
Original Article Open Access
David Izon, Olivia Wawryk, Damien McCarthy, Jennifer Soon, Sally Philip, Chris Kearney, Zhiheng Xu, Jianrong Zhang
Published online March 30, 2025
Oncology Advances. doi:10.14218/OnA.2025.00006
Abstract
Emergency department (ED) presentations are associated with higher cancer mortality. This study aimed to investigate the prevalence, frequency, and risk factors in Australian patients [...] Read more.

Emergency department (ED) presentations are associated with higher cancer mortality. This study aimed to investigate the prevalence, frequency, and risk factors in Australian patients diagnosed with malignant skin cancers.

This data-linkage cohort study examined adult patients presenting to the ED at the Royal Melbourne and Western Health hospitals within 12 months of a malignant skin cancer diagnosis. Multivariable logistic and Poisson regressions were used to analyze factors influencing the prevalence and frequency of ED presentations.

A total of 3,873 patients were diagnosed with skin malignancies between 2010 and 2018, of which 631 were diagnosed with melanoma. The prevalence of ED presentation was 29%, representing 2,119 episodes of care (median: 0; range: 0–14). Risk factors for a higher prevalence and frequency included: age ≥75 years (odds ratio (OR) = 1.78 [95% confidence interval 1.47–2.15]; incidence risk ratio (IRR) = 1.52 [1.35–1.70]); male (OR = 1.17 [1.01–1.36]; IRR = 1.23 [1.12–1.35]); socioeconomic status levels of 0–30% (OR = 1.59 [1.24–2.03]; IRR = 1.69 [1.45–1.96]) and 71–100% (OR = 1.30 [1.07–1.58]; IRR = 1.27 [1.12–1.45]); preferred language other than English (OR = 1.47 [1.17–1.84]; IRR = 1.49 [1.32–1.69]); and experience with any systemic therapy or radiotherapy (OR = 3.77 [2.12–6.71]; IRR = 2.36 [1.82–3.05]). Age < 65 years was protective (OR = 0.72 [0.59–0.89]; IRR = 0.78 [0.68–0.90]). Other preferred languages and cancer treatment experience were also risk factors in the sub-cohort with melanoma.

This study reports the prevalence and frequency of ED presentations following a skin cancer diagnosis and their association with socioeconomic and linguistic factors in Australia. Increased awareness of these factors could help address health inequities and potentially reduce the need for ED presentations.

Full article
152
Original Article Open Access
Mengxiao Liu, Ji Li, Kui Yu, Qian Yu, Shuying Li
Published online March 30, 2025
Oncology Advances. doi:10.14218/OnA.2025.00003
Abstract
In recent years, it has been found that Lycium barbarum can repair liver damage and promote liver regeneration. Additionally, the polysaccharides contained in Lycium barbarum have [...] Read more.

In recent years, it has been found that Lycium barbarum can repair liver damage and promote liver regeneration. Additionally, the polysaccharides contained in Lycium barbarum have anticancer properties and can induce apoptosis in cancer cells. Molecular docking, a mature computer-aided method, is widely used in drug discovery. This study aimed to verify the efficacy of active ingredients of Lycium barbarum in the treatment of liver cancer by molecular docking.

The effect of the active ingredients of Lycium barbarum in the treatment of liver cancer was verified by molecular docking, based on a previous study that examined the impact of Lycium barbarum on liver cancer using network pharmacology.

The binding energies of the key active ingredients and core targets were all less than −5.0 kcal/mol (1 kcal = 4.184 J), with most of them being less than −7.0 kcal/mol. This indicates that the key active ingredients and core targets have good binding ability, with most demonstrating strong binding affinity.

Most of the active ingredients in wolfberry can spontaneously bind to the core target protein, thereby playing a therapeutic role in liver cancer.

Full article
153
Review Article Open Access
Bhuban Ruidas
Published online March 30, 2025
Oncology Advances. doi:10.14218/OnA.2025.00001
Abstract
Mitochondria are highly dynamic organelles that adapt to cellular stress and metabolic demands through processes such as fission, fusion, mitophagy, and transport, all of which [...] Read more.

Mitochondria are highly dynamic organelles that adapt to cellular stress and metabolic demands through processes such as fission, fusion, mitophagy, and transport, all of which are vital for maintaining cellular signaling and metabolic homeostasis. Fission facilitates mitochondrial division and biogenesis, while fusion enhances mitochondrial fitness and metabolic flexibility by mitigating damage. Together, these processes play a critical role in regulating cellular stress responses and apoptosis. Dysregulation of mitochondrial dynamics has been linked to impaired development and cancer progression, including breast cancer metastasis. A comprehensive understanding of mitochondrial dynamics in breast cancer progression is essential for advancing precision medicine. This review delves into the intricate molecular mechanisms governing mitochondrial biogenesis, fission, fusion, and mitophagy, with a particular focus on the role of mitophagy in maintaining mitochondrial homeostasis and its connection to metastasis progression. Furthermore, it discusses potential therapeutic strategies targeting mitochondrial dynamics and highlights the critical steps necessary to translate these approaches into clinical trials.

Full article
154
Original Article Open Access
Shan Liu, Yiyuan Sun, Jia Liu, Jun He
Published online March 30, 2025
Future Integrative Medicine. doi:10.14218/FIM.2025.00006
Abstract
Traditional Chinese medicine (TCM) is widely used in cancer care in China as an integral part of treatment. This study aimed to understand the motivations of cancer patients in [...] Read more.

Traditional Chinese medicine (TCM) is widely used in cancer care in China as an integral part of treatment. This study aimed to understand the motivations of cancer patients in China for adopting TCM in their treatment and to examine their communication with oncologists. Gaining insights into these factors can enhance culturally sensitive, patient-centered oncology care.

A consecutive sample of 287 outpatients with cancer was recruited. Sociodemographic and clinical data, TCM usage, primary reasons for adopting TCM, and communication about TCM with oncologists were collected. Descriptive statistics, binary logistic regression, and thematic analysis were used to analyze the data.

Patients’ primary reasons for choosing TCM fell into five main categories: (1) belief in the benefits of TCM itself, (2) recommendations from others (family, friends, or oncologists), (3) belief in the benefits of combining TCM with Western medicine (WM), (4) previous positive experiences with TCM, and (5) dissatisfaction with or intolerance to WM. Among the 103 patients who consulted external TCM providers, 65% disclosed this to their oncologists. A longer time since diagnosis was associated with a higher likelihood of disclosure, while employed patients were less likely to inform their oncologists. Oncologists’ responses varied, with 55% neither approving nor disapproving of external TCM prescriptions.

The primary reasons for TCM use were perceived benefits and recommendations from oncologists and family members. However, communication about TCM with oncologists remains inconsistent. Enhancing patient-provider communication through education and fostering the integration of TCM and WM can improve holistic cancer care.

Full article
155
Hot Topic Commentary Open Access
Maria Tampaki, Evangelos Cholongitas
Published online March 27, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00051
156
Call for Papers Open Access
Lisa Chen
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00002
157
Original Article Open Access
Qiangqiang Zhao, Feihong Che, Hongxiao Li, Rihe Hu, Liuchao Hu, Qiushi Wei, Liangliang Xu, Yamei Liu
Published online March 25, 2025
Future Integrative Medicine. doi:10.14218/FIM.2024.00049
Abstract
Huo Xue Tong Luo Capsule (HXTL) has been clinically used to treat osteonecrosis of the femoral head, osteoporosis, and other bone and joint diseases with promising effects. Our [...] Read more.

Huo Xue Tong Luo Capsule (HXTL) has been clinically used to treat osteonecrosis of the femoral head, osteoporosis, and other bone and joint diseases with promising effects. Our previous study has shown that HXTL can promote osteogenesis in mesenchymal stem cells by inhibiting lncRNA-Miat expression through histone modifications. However, the mechanism by which HXTL treats postmenopausal osteoporosis (PMOP) remains unclear. In this study, we used network pharmacology-based mechanism prediction, molecular docking, and pharmacological validation to investigate the mechanism of HXTL in treating PMOP.

The key candidate targets and relevant signaling pathways of HXTL for PMOP treatment were predicted using network pharmacology and molecular docking analysis. RAW264.7 cells were used for Western blot to validate the predicted mechanistic pathways. The ovaries of mice were surgically removed to simulate PMOP. The effect of HXTL on PMOP was evaluated using tartrate-resistant acid phosphatase staining and immunohistochemical assays in vivo.

Network pharmacology analysis suggested that HXTL interacted with 215 key targets linked to PMOP, primarily affecting the PI3K-AKT signaling pathway. Molecular docking showed that the main components of HXTL exhibited strong binding affinity to NFATc1, p-PI3K, and p-AKT1. Furthermore, our in vitro results confirmed that HXTL suppressed the PI3K-AKT signaling pathway. In vivo, HE and tartrate-resistant acid phosphatase staining results showed that HXTL inhibited osteoclast formation and protected bone mass.

This research demonstrated that HXTL could inhibit osteoclast formation and prevent bone loss induced by ovariectomy in mice by inhibiting the PI3K-AKT signaling pathway. These findings provide important evidence for the clinical application of HXTL in treating PMOP.

Full article
158
Review Article Open Access
Xuexin Liang, Qingqing Tang, Jiawei Chen, Yanghui Wei
Published online March 25, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2024.00031
Abstract
Cancer is the leading cause of death globally, with nearly 20 million new cases and 9.7 million deaths in 2022. Due to its vague initial symptoms, cancer is often difficult to detect [...] Read more.

Cancer is the leading cause of death globally, with nearly 20 million new cases and 9.7 million deaths in 2022. Due to its vague initial symptoms, cancer is often difficult to detect in its early stages. Liquid biopsy, a revolutionary approach in oncology, provides a minimally invasive, real-time method for cancer detection, monitoring, and characterization by examining circulating tumor components in body fluids. This review presents current technologies and clinical applications of liquid biopsy, focusing particularly on its value for early cancer diagnosis. Liquid biopsy enables molecular profiling of cancer for precision oncology by isolating circulating extracellular nucleic acids (cell-free DNA), circulating tumor DNA, and circulating tumor cells from blood and other body fluids. Cell-free DNA, which circulates freely in the blood, may or may not be tumor-derived, while circulating tumor DNA is specifically of tumor origin. Additionally, circulating tumor cells can be isolated from blood; these cells, shed from tumors into the bloodstream, typically survive only 1–2.5 h before immune clearance, though a small fraction can persist and metastasize to distant sites. Exosomes, small membrane-bound vesicles secreted by tumor cells, also carry molecular information about the tumor and have become a valuable source of biomarkers in liquid biopsy. Advances in detection technologies for these analytes have expanded the utility of liquid biopsy, facilitating the identification of somatic mutations and actionable genomic alterations in tumors. Finally, this review discusses the opportunities and challenges facing liquid biopsy and offers insights into its future development.

Full article
159
Review Article Open Access
Aixin Qiu, Zhen Luo, Xiaohui Liu, Xiangchen Hou, Yao Xiao, Yue Zhang, Yang Yu
Published online March 25, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2024.00029
Abstract
Prostate cancer (PCa) often manifests insidiously, with most patients being diagnosed at an advanced stage, leading to a poor prognosis. Early detection of PCa can significantly [...] Read more.

Prostate cancer (PCa) often manifests insidiously, with most patients being diagnosed at an advanced stage, leading to a poor prognosis. Early detection of PCa can significantly prolong overall survival by impeding the progression of metastasis. A commonly utilized screening method for detecting PCa is the prostate-specific antigen test. However, since the prostate-specific antigen lacks specificity and sensitivity for PCa identification, there is a paramount urgency to develop precise diagnostic biomarkers for early detection. Extracellular vesicles, known as exosomes, are released by cells into body fluids. Exosomes derived from cancer cells can carry genetic information about the tumor, including DNA, RNA, and proteins, which play crucial roles in tumor initiation, invasion, metastasis, and drug resistance. Studies have indicated that exosomes (including messenger RNAs, microRNAs, long noncoding RNAs and others) can enhance the sensitivity and specificity of PCa diagnosis, indicating their potential for early detection. This review highlights the biological characteristics and functions of exosomes, as well as recent advancements in their use for the diagnosis, prognosis, and treatment of prostate cancer.

Full article
160
Review Article Open Access
Prithvi S. Prabhu, Rija Kalita, Vanshika Sharma, Tulika Prakash
Published online March 25, 2025
Journal of Translational Gastroenterology. doi:10.14218/JTG.2024.00030
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and primarily includes ulcerative colitis and Crohn’s disease. As the number [...] Read more.

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and primarily includes ulcerative colitis and Crohn’s disease. As the number of patients suffering from IBD increases, diagnosis and treatment have become pressing yet challenging tasks. A major challenge is that patients with IBD often do not exhibit characteristic symptoms, making it difficult to distinguish IBD from other intestinal abnormalities. Endoscopy is the most conventional method used to diagnose IBD; however, this technique is invasive and costly. Therefore, there is a need to develop affordable, non-invasive diagnostic methods, which underscores the importance of identifying biomarkers specific to IBD. It is now well established that the gut microbiome plays a significant role in the development of IBD, and changes in the abundance of various gut organisms have been widely studied to identify microbial signatures associated with the disease. This review discusses the current state of knowledge regarding biomarkers in IBD, with a primary focus on the gut microbiome, associated metabolic signatures, and their links with immunological biomarkers. These biomarkers will help propose an integrative model to better understand the pathophysiology of this complex disease. Such an integrated approach also offers insights into potential therapeutic targets for designing more effective treatment strategies for patients.

Full article
PrevPage 8 of 124 12789123124Next
Back to Top