v
Search
Advanced Search
  • Newly published articles
  • Highlights
    Research Letter Open Access
    Bao-Gan-Xiao-Zhi-Wan Treatment Attenuates Methionine-choline-deficient Diet-induced Metabolic Dysfunction-associated Steatohepatitis in Rats by Modulating the NF-κB Signal Pathway and Autophagy
    Liming Zhou, Xiaobin Zeng, Xiaofang Wei, Wanying Shen, Jie Yao, Weigang Wu, Lanlan Ge, Boping Zhou
    Journal of Clinical and Translational Hepatology, Published online April 16, 2024. doi:10.14218/JCTH.2024.00031
    Original Article Open Access
    Five-year Treatment with Tenofovir Alafenamide Achieves High Rates of Viral Suppression, Alanine Aminotransferase Normalization, and Favorable Bone and Renal Safety in Chinese Chronic Hepatitis B Patients
    Jinlin Hou, Qin Ning, Zhongping Duan, Yu Chen, Qing Xie, Lunli Zhang, Shanming Wu, Hong Tang, Jun Li, Feng Lin, Yongfeng Yang, Guozhong Gong, Yanwen Luo, Shelley Xie, Hongyuan Wang, Roberto Mateo, Tahmineh Yazdi, Frida Abramov, Leland J. Yee, John Flaherty, Chengwei Chen, Yan Huang, Mingxiang Zhang, Jidong Jia
    Journal of Clinical and Translational Hepatology, Published online April 15, 2024. doi:10.14218/JCTH.2023.00417
    Abstract
    After 3-years (144 week) of double-blind treatment in Chinese chronic hepatitis B patients in two ongoing phase 3 studies, tenofovir alafenamide (TAF) showed similar efficacy to [...] Read more.

    After 3-years (144 week) of double-blind treatment in Chinese chronic hepatitis B patients in two ongoing phase 3 studies, tenofovir alafenamide (TAF) showed similar efficacy to tenofovir disoproxil fumarate (TDF), with improved renal and bone safety. In this study, we aimed to report the 5-year results from 2 years into the open-label TAF treatment phase.

    All participants completing the 144-week double-blind treatment were eligible to receive open-label TAF 25 mg once daily up to week 384. Serial analysis of viral suppression (hepatitis B virus DNA <29 IU/mL), alanine aminotransferase normalization, serological responses, and safety outcomes at year 5 (week 240) was performed.

    The open-label phase included 93% (311/334) of the enrolled participants, which included 212 who switched from double-blind TAF to open-label TAF (TAF-TAF) and 99 who switched from double-blind TDF to open-label TAF (TDF-TAF). Baseline characteristics were comparable. Week 240 viral suppression rates were similar between groups [93.4% vs. 93.9%; difference: −1.5%, (95% CI: −6.4 to −3.5), p=0.857]. Alanine aminotransferase normalization and serological response rates were higher in the TAF-TAF group than in the TDF-TAF group. The frequencies of adverse events and laboratory abnormalities were low and similar between groups. Both groups had similar small numerical declines from baseline in estimated glomerular filtration rate at year 5 (week 240, −2.85 mL/min vs. −3.29 mL/min, p=0.910). The greater declines in renal and bone parameters in the TDF-TAF group through week 144 improved after switching to TAF.

    The 5-year TAF treatment efficacy was high and similar to that of 3-year TDF followed by 2-year TAF in Chinese chronic hepatitis B patients. Favorable effects on bone and renal parameters were sustained with TAF treatment alone and were observed following the switch from TDF to TAF.

    Full article
    Review Article Open Access
    Exploring the Impact of Iron Overload on Mitochondrial DNA in β-Thalassemia: A Comprehensive Review
    Jyothi M. Narahari, Prajwal Guruswamy, Navyashree M. Jagadeesha, Kusuma K. Shivashakar, Divya P. Kumar, Prashanth S. Narayana, Prashant M. Vishwanath, Akila Prashant
    Gene Expression, Published online April 15, 2024. doi:10.14218/GE.2023.00128
    Abstract
    Iron overload is a significant complication commonly observed in individuals with β-thalassemia, resulting from enhanced iron absorption due to ineffective erythropoiesis and frequent [...] Read more.

    Iron overload is a significant complication commonly observed in individuals with β-thalassemia, resulting from enhanced iron absorption due to ineffective erythropoiesis and frequent blood transfusions. Iron overload can lead to severe tissue damage and organ dysfunction, significantly impacting the quality of life for those affected. Additionally, recent research indicates that iron overload may also adversely impact mitochondrial function, further exacerbating the pathophysiology of this disease. Excessive iron accumulation in mitochondria can impair the electron transport chain, reduce adenosine tri phosphate synthesis, and increase the generation of reactive oxygen species, resulting in elevated tissue damage and clinical complications. Emerging evidence suggests that specific mitochondrial DNA (mtDNA) mutations may further contribute to the severity of iron overload in β-thalassemia patients. Currently, the clinical management of iron overload in patients with β-thalassemia primarily relies on conventional iron chelation therapies, aiming to reduce iron burden and prevent tissue damage. However, cases involving mtDNA mutations introduce additional complexities, necessitating personalized treatment approaches. Advances in gene therapy and mitochondrial replacement strategies offer promising avenues for potential targeted interventions. This review provides a comprehensive overview of the mechanisms underlying iron overload in β-thalassemia and its association with mtDNA mutations. It discusses the clinical manifestations, diagnostic challenges, and current treatment options for managing iron overload, while also highlighting emerging research directions and potential therapeutic targets for improved patient care. Ultimately, a better understanding of the complex interplay between iron overload and mtDNA mutations in β-thalassemia will pave the way for innovative strategies to alleviate the disease burden.

    Full article
All Journals
  • Most viewed
  • Most cited
    Review Article Open Access
    Environmental Triggers’ Involvement in the Development of Type 1 Diabetes Mellitus
    Tajudeen Olanrewaju Yahaya, Umar Usman Liman, Caleb Dikko Obadiah, Zafira Illo Zakari, Daniel Anyebe, Boniface Gomo Clement, Balkisu Marafa Muhammad
    Exploratory Research and Hypothesis in Medicine, Published online July 27, 2022. doi:10.14218/ERHM.2022.00051
    Abstract
    The huge burden of type 1 diabetes mellitus (T1DM) has been a source of concern globally since the Industrial Revolution in the 18th–19th centuries. To this end, studies have shown [...] Read more.

    The huge burden of type 1 diabetes mellitus (T1DM) has been a source of concern globally since the Industrial Revolution in the 18th–19th centuries. To this end, studies have shown that certain environmental changes that accompanied the Revolution may have increased the risk and burden of the disease in genetically predisposed individuals. However, documented studies that synthesize these environmental triggers are scarce. As a result, the current study was conceived to synthesize the environmental triggers of T1DM to boost public awareness. Relevant information was retrieved from reputable academic databases; namely, Scopus, PubMed, SpringerLink, and Embase. The results showed that chemical exposure, viral infection, gut microbiome disruption, vitamin and mineral deficiencies, inadequate or exclusive breastfeeding, as well as early exposure to infant feeding formulas could increase the risk and burden of T1DM in genetically predisposed individuals. As a consequence, these triggers could compromise the expression of certain genes involved in insulin synthesis and immune function, such as the human leukocyte antigen (HLA), insulin (INS), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and protein tyrosine phosphatase non-receptor type 22 (PTPN22) genes. This would result in a dysfunctional immune system in which immune cells, such as T-cells and B-cells and molecules, such as cytokines would attack self-tissues, thus causing autoimmunity of the pancreatic beta cells. Environmental triggers could also induce the T1DM pathophysiology by modifying the epigenome of the mentioned genes. Furthermore, some epigenetic changes could be reversed, which would infer that treatment procedures that would include the pathophysiology of the environmental triggers could be more effective.

    Full article
    Original Article Open Access
    Overexpression of RBM34 Promotes Tumor Progression and Correlates with Poor Prognosis of Hepatocellular Carcinoma
    Wei Wang, Rui Zhang, Ning Feng, Longzhen Zhang, Nianli Liu
    Journal of Clinical and Translational Hepatology, Published online July 13, 2022. doi:10.14218/JCTH.2022.00166
    Abstract
    Emerging evidence suggests that RNA-binding motif (RBM) proteins are involved in hepatocarcinogenesis and act either as oncogenes or tumor suppressors. The objective of this study [...] Read more.

    Emerging evidence suggests that RNA-binding motif (RBM) proteins are involved in hepatocarcinogenesis and act either as oncogenes or tumor suppressors. The objective of this study was to investigate the role of RBM34, an RBM protein, in hepatocellular carcinoma (HCC).

    We first examined the expression of RBM34 across cancers. The correlation of RBM34 with clinicopathological features and the prognostic value of RBM34 for HCC was then investigated. Functional enrichment analysis of RBM34-related differentially expressed genes (DEGs) was performed to explore its biological function. RNA sequencing (RNA-seq) was applied to identify downstream genes and pathways affected upon RBM34 knockout. The correlation of RBM34 with immune characteristics was also analyzed. The oncogenic function of RBM34 was examined in in vitro and in vivo experiments.

    RBM34 was highly expressed in hepatocellular carcinoma and correlated with poor clinicopathological features and prognosis. RBM34 was positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. A positive correlation was also observed between RBM34, T cell exhaustion, and regulatory T cell marker genes. Knockout of RBM34 significantly inhibited cell proliferation, migration, and xenograft tumor growth, and sensitized HCC cells to sorafenib treatment. RBM34 inhibition reduced FGFR2 expression and affected PI3K-AKT pathway activation in HCC cells.

    Our study suggests that RBM34 may serve as a new prognostic marker and therapeutic target of HCC.

    Full article
    Original Article Open Access
    Naringenin is a Potential Immunomodulator for Inhibiting Liver Fibrosis by Inhibiting the cGAS-STING Pathway
    Li Chen, Siwei Xia, Shuqi Wang, Yuanyuan Zhou, Feixia Wang, Zhanghao Li, Yang Li, Desong Kong, Zili Zhang, Jiangjuan Shao, Xuefen Xu, Feng Zhang, Shizhong Zheng
    Journal of Clinical and Translational Hepatology, Published online April 28, 2022. doi:10.14218/JCTH.2022.00120
    Abstract
    Naringenin is an anti-inflammatory flavonoid that has been studied in chronic liver disease. The mechanism specific to its antifibrosis activity needs further investigation This [...] Read more.

    Naringenin is an anti-inflammatory flavonoid that has been studied in chronic liver disease. The mechanism specific to its antifibrosis activity needs further investigation This study was to focused on the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) pathway in hepatic stellate cells and clarified the antifibrosis mechanism of naringenin.

    The relationship between the cGAS-stimulator of interferon genes (STING) pathway and liver fibrosis was analyzed using the Gene Expression Omnibus database. Histopathology, immunohistochemistry, fluorescence staining, Western blotting and polymerase chain reaction were performed to assess gene and protein expression levels associated with the cGAS pathway in clinical liver tissue samples and mouse livers. Molecular docking was performed to evaluate the relationship between naringenin and cGAS, and western blotting was performed to study the expression of inflammatory factors downstream of cGAS in vitro.

    Clinical database analyses showed that the cGAS-STING pathway is involved in the occurrence of chronic liver disease. Naringenin ameliorated liver injury and liver fibrosis, decreased collagen deposition and cGAS expression, and inhibited inflammation in carbon tetrachloride (CCl4)-treated mice. Molecular docking found that cGAS may be a direct target of naringenin. Consistent with the in vivo results, we verified the inhibitory effect of naringenin on activated hepatic stellate cells (HSCs). By using the cGAS-specific agonist double-stranded (ds)DNA, we showed that naringenin attenuated the activation of cGAS and its inflammatory factors affected by dsDNA. We verified that naringenin inhibited the cGAS-STING pathway, thereby reducing the secretion of inflammatory factors by HSCs to ameliorate liver fibrosis.

    Interrupting the cGAS-STING pathway helped reverse the fibrosis process. Naringenin has potential as an antihepatic fibrosis drug.

    Full article
Special Features

Call for Papers for Special Issue 'Updates of Cytopathology Reporting Systems'

Journal: Journal of Clinical and Translational Pathology
Special Issue: Updates of Cytopathology Reporting Systems
Submission deadline: November 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue 'Frontier research on the toxicity and efficacy of Chinese medicine'

Journal: Future Integrative Medicine
Special Issue: Frontier research on the toxicity and efficacy of Chinese medicine
Submission deadline: June 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue ‘New Translational Challenges in Primary Biliary Cholangitis’

Journal: Journal Clinical and Translational Hepatology
Special Issue: New Translational Challenges in Primary Biliary Cholangitis
Submission deadline: June 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue ‘A Spotlight on Progress and Pitfalls in NAFLD/MAFLD Studies, 2022’

Journal: Journal of Clinical and Translational Hepatology
Special Issue: A Spotlight on Progress and Pitfalls in NAFLD/MAFLD Studies, 2022
Submission deadline: March 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue 'Comparative study of traditional medicine in the world'

Journal: Future Integrative Medicine
Special Issue: Comparative study of traditional medicine in the world
Submission deadline: June 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue 'Therapeutic effects of herbal medicines on neurological impairment and related mental disorders based on the evidence of clinical and basic studies'

Journal: Future Integrative Medicine
Special Issue: Therapeutic effects of herbal medicines on neurological impairment and related mental disorders based on the evidence of clinical and basic studies
Submission deadline: June 30, 2023
Publication date: An article will be published online as soon as it is accepted

Call for Papers for Special Issue ‘Immunoregulatory Mechanisms of Herbal Medicines in Cancer and Infectious Diseases’

Journal: Future Integrative Medicine
Special Issue: Immunoregulatory Mechanisms of Herbal Medicines in Cancer and Infectious Diseases
Submission deadline: June 30, 2023
Publication date: An article will be published online as soon as it is accepted
Back to Top