Artemisia argyi H. Lév. & Vaniot essential oil (AAEO) holds significant pharmacological potential, but its application is constrained by hepatotoxicity. This study aimed to investigate the feasibility of reducing AAEO’s toxicity through storage and to evaluate changes in chemical composition, toxicity, and bioactivity.
Gas chromatography-mass spectrometry was used to analyze compositional changes during storage. Zebrafish acute toxicity tests and the liver-specific transgenic zebrafish model Tg(fabp10:EGFP) were used to assess toxicity. Antimicrobial, analgesic, and antioxidant assays evaluated variations in bioactivity.
Over the 150-day storage period, gas chromatography-mass spectrometry analysis identified 39 components. Zebrafish acute toxicity tests showed that the LD50 of AAEO stored for 0, 30, 60, 90, 120, and 150 days were 0.10 µL·mL−1, 0.10 µL·mL−1, 0.10 µL·mL−1, 0.11 µL·mL−1, 0.13 µL·mL−1, and 0.14 µL·mL−1, respectively, demonstrating a 40% reduction in acute toxicity after 150 days of storage. Using the liver-specific green fluorescent transgenic Tg(fabp10:EGFP) zebrafish model, the inhibition rates of AAEO on hepatic fluorescence intensity were measured at 68.5%, 43.5%, 42.6%, 37.8%, 34.6%, and 31.9% at different time points, confirming reduced hepatotoxicity after storage. Additionally, the antioxidant and analgesic activities of AAEO were significantly enhanced (p < 0.05) after storage, while the antibacterial activity decreased (p < 0.05).
After storage, AAEO significantly reduces hepatotoxicity, with a 40% decrease in acute toxicity after 150 days. Meanwhile, the antioxidant and analgesic activities of AAEO increase, while its antibacterial activity decreases after storage.
Full article